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Diastolic function is an important component of left ventricular (LV) function which is often 
overlooked. It can cause symptoms of heart failure in patients even in the presence of 
normal systolic function. The parameters used to assess diastolic function often measure 
flow and are affected by the loading conditions of the heart. The interpretation of diastolic 
function in the context of congenital heart disease requires some understanding of the 
effects of the lesions themselves on these parameters. Individual congenital lesions will 
be discussed in this paper. Recently, load-independent techniques have led to more 
accurate measurements of ventricular compliance and remodeling in heart disease. 
The combination of inflow velocities and tissue Doppler measurements can be used 
to estimate diastolic function and LV filling pressures. This review focuses on diastolic 
function and assessment in congenital heart disease.
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iNTRODUCTiON

Myocardial function has been extensively studied in the context of congenital heart disease. The 
focus to date has been on systolic function due to its importance and ease of measurement. However, 
the heart also needs to be adequately filled in order to function optimally, and this aspect of cardiac 
function is relatively under-investigated. The difficulties (as with systolic function) come when 
attempting to measure the relaxation of the myocardium while negating any effect of pre- or after-
load. This is a difficult task and has led to the development of several tools which track myocardial 
movement independently of the usual flow-based parameters; the latter are heavily influenced by 
loading conditions. This article will summarize the current assessment of diastolic function using 
echocardiography and cardiac magnetic resonance (CMR) imaging in the normal heart and in 
patients with congenital heart disease.

DiASTOLiC DYSFUNCTiON (DD)

Diastole denotes the filling phase of the cardiac cycle. Filling is determined by myocardial relaxa-
tion as well as atrial contraction and atrial and ventricular compliance. Myocardial relaxation 
begins when the myofibrils return to an unstressed state and this precedes mitral valve (MV) 
opening (isovolumic relaxation). ATP is used to actively uncouple calcium from the contractile 
apparatus and return it to the sarcoplasmic reticulum. Active relaxation is only responsible for 
early diastolic filling, whereas compliance is important throughout filling and especially during 
atrial contraction.

The early part of diastole is active relaxation, which is an energy-consuming process. The latter part 
is due to compliance or stiffness of the ventricle. Isovolumic relaxation time (IVRT) can be measured 
by invasive catheterization measurements. The index used in its measurement is the time constant 
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of isovolumic pressure decline (τ). In non-invasive measurement, 
IVRT is the closest measurement to assess this value. However, as 
with all indices of diastolic function, the loading conditions must 
be taken into account.

The stiffness of the myocardium also plays an important role 
in diastolic function. The mass of the left ventricular (LV) affects 
the stiffness as do the viscoelastic properties of the myocardium 
(cellular and extracellular components). Attempts are made to 
measure this increase in myocardial stiffness. However, the dif-
ficulty arises in the mechanism of measurement as well as the 
timing and nature of diastole. Flow-based measurements rely on 
a change in volume to occur, and so they are unable to quantify 
isovolumic relaxation as they assess only the last stage of diastole. 
There is also no universal measurement of diastole [equivalent to 
ejection fraction (EF) in systole] and torsion and dyssynchrony 
are difficult to quantify.

NON-iNvASive ASSeSSMeNT MeTHODS

echocardiography
As the ventricle stiffens, the velocity of blood flowing into the 
ventricle decreases. This downward trend would continue if 
not for compensation which takes the form of increased heart 
rate or increased diastolic filling pressure to maintain stroke 
volume (SV). The latter causes an increase toward normal 
filling velocities (pseudonormalization) and a prolongation of 
rapid filling. Ventricular elastance is an important marker for 
ventricular stiffness and is correlated with increased cardiac 
morbidity (1). Increased strength of atrial contraction is a related 
compensatory mechanism to cope with increased diastolic fill-
ing pressures.

Left Atrium (LA) volume
The LA is exposed to the LV loading pressure during MV 
opening and gradually remodels and increases in size. As 
LA remodeling takes place over time, it is a marker of the 
duration of DD as well as severity. The amount of dilatation 
also correlates with cardiovascular risk burden (2). There is a 
correlation between LA size and the risk of developing conges-
tive cardiac failure (3, 4), atrial fibrillation (5), and ischemic 
heart disease (6). LA size is also a predictor of adverse outcome 
in patients with hypertrophic cardiomyopathy (7). LA size is 
measured from the apical four-chamber view at end-systole. 
It is also possible to calculate LA area from 2D four-chamber 
and two-chamber views.

Transmitral Doppler inflow
The mitral inflow velocity profile helps characterize LV inflow 
dynamics. It is best measured from the apical four-chamber view 
(in both children and adults) with the cursor placed across the 
MV just inside the LV. The E wave is the early diastolic filling 
wave seen on Doppler interrogation of the MV. It is caused by 
the drop of LV pressure below LA pressure during the cardiac 
cycle and is therefore influenced by LA pressure, LV compliance, 
and the rate of LV relaxation. The A wave, or atrial contraction 
wave, is immediately after the E wave on Doppler flow analysis. 
This is influenced by LV compliance and LA pressure and LA 

contractility rate. All MV inflow velocities are affected by preload 
and afterload. Under normal conditions, the E velocity is greater 
than A velocity (Figure 1). As the ventricle becomes less compli-
ant, the E velocity decreases and the ratio lowers. When the A 
velocity surpasses the E velocity, true DD is present. The mitral 
inflow is affected by preload, heart rate (including arrhythmias) 
and age (8).

E wave deceleration time is the rate at which the atrial and 
ventricular pressures equilibrate after onset of the E wave and 
is shorter in compliant ventricles (160–240 ms in adults). The 
IVRT is the period between closure of the aortic valve and 
opening of the MV. This is normally 70–90 ms long in adults 
and is prolonged in the case of decreased LV compliance. It is 
also affected by heart rate and ventricular function. It is best 
recorded from the apical five-chamber view with the cursor 
placed to record LV outflow tract velocities and LV inflow 
simultaneously.

Pulmonary venous (Pv) inflow
Pulmonary venous flow can enhance the information provided by 
MV inflow velocities. The pulsed-waved Doppler cursor should 
be placed in the right or left upper pulmonary vein from the api-
cal four-chamber view, as distally into the vein as possible. The 
variables which are measured include peak systolic flow velocity 
(S), the peak diastolic flow velocity (D), peak atrial reversal flow 
velocity (AR), and AR duration (ARdur). The normal PV flow 
profile shows an initial, large S wave followed by a small D wave 
and then some retrograde flow during atrial contraction. As LA 
pressures increase, flow becomes predominantly diastolic and 
the S/D ratio reverses. A decreased systolic fraction of 40% is 
associated with elevated mean LA pressure of >15 mmHg (9). 
AR and ARdur also help, as an increase in AR velocity and dura-
tion indicates increased LA pressure.

Color M-Mode Doppler
An intraventricular pressure gradient exists between the base 
and apex of the ventricle, which acts to cause a suction effect on 
blood during diastole (10, 11). This can be measured using color 
M-mode across the MV (from the apical four-chamber view) 
and measuring the slope of the first aliasing velocity (red–blue) 
from the MV plane to 4 cm distal in the LV (Vp in centimeters 
per  second) (12). This is known as the color M-mode velocity 
propagation index (Vp). Vp is not subject to pseudonormaliza-
tion, which suggests that it is preload independent (13). It does 
not change with alteration of preload in dogs (14, 15) and humans 
(14, 16). There is an inverse correlation between the isovolumet-
ric time constant of relaxation (τ) and Vp in humans (13, 14, 17) 
and dogs (14). Vp is associated with ventricular wall relaxation, 
becoming less steep as diastolic function worsens (17). The ratio 
of early LV filling (E) to Vp is a commonly used parameter, which 
corresponds to pulmonary capillary wedge pressure (PCWP), 
brain natriuretic peptide, and NYHA class (16).

ASSeSSMeNT OF SeveRiTY

There are different grades of DD. Early (grade I/impaired 
relaxation) dysfunction is caused by a decrease in LV compliance, 
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FiGURe 1 | Normal mitral inflow velocity profile. Maximum E Velocity (cm/s) = early diastolic mitral inflow velocity. MV Deceleration Time (ms) = duration of 
deceleration of E wave. MV Dec Slope (m/s2) = rate of decrease of E wave. Maximum A Velocity (cm/s) = atrial component of mitral filling. A wave duration  
(ms) = duration of A wave. MV E/A ratio = ratio of E velocity to A velocity (normal value <8).
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thereby leading to increased LV filling pressure. This delays 
atrial emptying and prolongs the E wave deceleration time 
(DT  >  240  ms). Atrial contraction becomes more vigorous, 
reducing the E/A ratio to <0.9. Worsening LV DD leads to 
increased atrial pressure and a decrease in the pressure gradient 
between the LA and LV, thereby leading to a shortened DT. The 
E/A ratio increases (0.9–1.5), but the E/A profile may appear 
normal (grade II or pseudonormalization). However, the e′ 
velocity on tissue Doppler imaging (TDI) (see below) remains 
low, giving a clue to the underlying abnormality (18). In grade III 
dysfunction (restrictive), the E/A ratio is >2, DT <160 ms, and 
the inflow profile can be altered by the Valsalva maneuver. This 
works because LA pressure is reduced during the strain phase of 
the Valsalva maneuver, and this unmasks the underlying DD. In 
grade IV dysfunction, the abnormalities are fixed in the face of 
the Valsalva maneuver, as LA pressure is too elevated to respond 
to decreased preload (see Figure 2). The timing of onset of E and 
e′ waves is important. Normally, the e′ occurs at the onset of or 
before the E wave. If the LA pressure is elevated, the E wave may 
precede e′ (19, 20).

Tissue Doppler imaging
Tissue Doppler imaging directly measures myocardial wall 
velocities by focusing on the high-amplitude, low-frequency 
signals reflected by the myocardium rather than the blood pool. 
The areas sampled include the lateral aspect of the mitral annulus 
in the apical four-chamber view, the basal septal region in the 
same view, and the lateral tricuspid valve annulus. This serves to 
minimize translational artifact and to align the probe with the 
direction of movement. Three waves are usually seen—the systolic 
(s′) wave, the early diastolic (e′) wave, and the late diastolic wave 
caused by atrial contraction (a′). Normal values and Z-scores are 
available for each age group in pediatrics (21).

Nagueh et  al. were the first to show that E/e′ ratio (ratio 
of transmitral E velocity and TDI mitral annular e′ velocity) 
corresponded to PCWP (18). In 125 patients classified by 
systolic and diastolic function and symptoms, PCWP cor-
related strongly with E/e′ ratio r  =  0.87. PCWP correlated 
only weakly with E velocity but not e′ velocity. Patients with 
abnormal relaxation and pseudonormalization of the mitral 
inflow E/A ratio had a decreased e′ velocity (P  <  0.001). 
In patients with DD, a saline bolus affects the E/A wave as 
measured by transmitral Doppler measurement but did not 
affect the e′ or e′/a′ ratios (22). These studies show that e′ 
acts as a preload-independent marker of LV relaxation. E wave 
velocity on mitral inflow Doppler, corrected for e′, correlates 
strongly with PCWP, and can be used to estimate LA pressure  
non-invasively.

Tissue Doppler imaging can also differentiate between 
restrictive cardiomyopathy and constrictive pericarditis (23). 
As e′ is a property of the myocardium, theoretically, it should 
remain unchanged in the presence of extrinsic constriction and 
should only be reduced in true restrictive cardiomyopathy. This 
is indeed the case, with a significantly lower e′ in restrictive 
cardiomyopathy than constrictive pericarditis (P < 0.001) (23). 
This has been corroborated by other groups (24, 25).

E/e′ ratio is an independent predictor of outcome in patients 
assessed 1–6  days after acute myocardial infarction (26). In a 
population study of 2,042 patients in the community, any degree 
of DD was predictive of all-cause mortality, whether the patient 
had clinical symptoms or not (27). In the ADEPT trial, of 225 
patients with symptomatic heart failure (HF), diastolic param-
eters including shorter deceleration time, lower S/D pulmonary 
vein flow ratio, and increasing E/e′ and E/Vp ratios were all 
independent predictors of the primary end-points of death, 
hospitalization, or transplantation (28).
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FiGURe 2 | The stages of diastolic heart failure. LV and left atrial (LA) pressures during diastole, transmitral Doppler LV inflow velocity, pulmonary vein Doppler 
velocity, and Doppler tissue velocity. IVRT indicates isovolumic relaxation time; Dec. Time, e-wave deceleration time; E, early LV filling velocity; A, velocity of LV filling 
contributed by atrial contraction; PVs, systolic pulmonary vein velocity; PVd, diastolic pulmonary vein velocity; PVa, pulmonary vein velocity resulting from atrial 
contraction; Sm, myocardial velocity during systole; Em, myocardial velocity during early filling; and Am, myocardial velocity during filling produced by atrial 
contraction.
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eMeRGiNG TeCHNiQUeS FOR 
ASSeSSMeNT OF DiASTOLiC FUNCTiON

Torsion
Measurement of LV torsion provides insight into an important 
mechanism of LV filling and ejection. LV rotation is sensitive to 
changes in regional and global LV function (29–31). MRI tagging 
can be used for this purpose but can be difficult and costly to 
obtain (31–34). Speckle tracking may be used to measure torsion, 
using the largely experimental practice of “torsion echocardiog-
raphy” (35–37).

Strain
Strain is a dimensionless index of change in myocardial length 
in response to applied force and is expressed as a fraction or 
percentage change. Strain rate is the change in length over time 
(per second). By convention, myocardial lengthening or thinning 
is given a positive value. The techniques used to measure strain 
include echocardiography M-mode (38) or TDI (39, 40) as well as 
MRI tagging (41, 42). The limitations of echocardiographic meas-
urement include beam direction, which will allow measurement 

of longitudinal, radial, and circumferential directions depending 
on the view and angle of interrogation.

Strain imaging aims to provide a high-resolution, real-time 
measure of myocardial deformation which is independent of 
loading conditions. A normal pattern of diastolic relaxation has 
been studied and described (43). Strain imaging can be used to 
distinguish between restrictive cardiomyopathy and constric-
tive pericarditis (44) as well as physiological hypertrophy and 
hypertrophic cardiomyopathy (45).

In a study of 194 patients with chronic systolic HF, global 
longitudinal strain (GLS) correlated with worse NYHA class 
and higher NT-proBNP. It also correlated with LV structure and 
LVEF, as well as LV and RV DD. GLS also predicted long-term 
adverse events after adjustment for age, ischemic etiology, E/e′ 
septal, and NT-proBNP with HR 2.04 (P = 0.024).

CMR iMAGiNG

Magnetic resonance imaging can be used to assess diastolic 
function by the inflow of blood or the movement of myocar-
dium in much the same way as echocardiography. A number of 
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TABLe 1 | Findings in various congenital cardiac lesions with the onset 
of diastolic dysfunction.

Lesion LA size Mitral inflow TDi

HcM Increased Increased E/A ratio, 
DT reduced

E/e′ increased

Aortic stenosis Increased/
normal

DT reduced, 
shortened A wave 
duration

E′, A′ reduced, E′ 
increased

Aortic 
regurgitation

Enlarged Increased E/A MV e′ decreased, E/e′ 
increased

Mitral stenosis Enlarged Low transmitral 
gradient, short DT

IVRT–TE-e′ decreased, 
E/e′ increased

Mitral 
regurgitation

Enlarged Increased A wave 
reversal velocity

Decreased IVRT–TE-e′

Tetralogy of 
Fallota

Normal Reduced E/A ratio, 
shorter IVRT

Reduced MV e′ and 
a′, reduced TV s′ and 
e′, increased TV a′

Single ventricle Normal/
enlarged 
(dependent on 
anatomy)

MV E decreased E/e′ increased

IVRT, isovolumic relaxation time; DT, e-wave deceleration time; E, early left ventricular 
(LV) filling velocity; A, velocity of LV filling contributed by atrial contraction; s′, 
myocardial velocity during systole; e′, myocardial velocity during early filling; a′, 
myocardial velocity during filling produced by atrial contraction; TE-e′ , time interval from 
onset of E wave to e′; LA, left atrium; MV, mitral valve; TDI, tissue Doppler imaging.
aEnd-diastolic forward flow in PA and reduced pulmonary regurgitation.
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techniques exist which can help to evaluate diastolic function: 
gradient echo assesses functional dimensions; phase-contrast 
measures flow, and myocardial tagging measures regional 
dynamics (46). Flow measurements are more complete as 
they include the entire annulus, rather than a point as in 
echocardiography. Tissue phase mapping (TPM) can be used 
to measure myocardial velocities and obtain similar informa-
tion to TDI. This process allows calculation of E/Ea ratio 
(E = MV inflow E wave and Ea = early myocardial relaxation  
on TPM).

It is also possible to evaluate tissue characteristics (47), includ-
ing interstitial and replacement fibrosis using CMR. In a study 
of 50 patients, with reduced EF, late gadolinium enhancement 
(a technique which identifies replacement fibrosis) was corre-
lated with a lower septal E/e′ ratio than patients without a scar 
(P = 0.05).

Measurement of dimensions and flow are evaluated similarly 
to echocardiographic measures, although volumes are more 
accurate. In tagging, the myocardium is labeled using selective 
saturation prepulses in specific myocardial regions perpen-
dicular to the imaging plane. This allows strain and 3-D motion 
analysis (48).

CeLLULAR CHANGeS wiTH AGiNG

Increased ventricular stiffness and a change in the microscopic 
structure of the myocardium are inevitable parts of aging. This, 
coupled with changes in vascular stiffness, may lead to increased 
vulnerability in certain groups to developing symptomatic HF 
(1). Traditional assessment of systolic heart function will not 
identify these patients. The increased stiffness of the myocardium 
is thought to be due to changes in the collagen content of the 
extracellular matrix and increased fibrosis (49). There are other 
changes including reduced phosphorylation of sarcomeric pro-
teins (50) and changes in Titin (51), which may be of importance 
at a cellular level.

CONGeNiTAL HeART DiSeASe

Overview
There are five main classes of CHD, which affect diastolic 
function. Pressure–overload lesions such as aortic stenosis and 
systemic hypertension cause a decrease in compliance due to 
hypertrophy. Volume overload leads to increased compliance 
up until a point, when hypertrophy or fibrosis occurs. Mixed 
pressure and volume overload can combine to affect compliance, 
such as in repaired Tetralogy of Fallot with some pulmonary valve 
stenosis and incompetence. Primary or secondary myocardial 
diseases can decrease compliance directly, such as in amyloidosis 
or restrictive cardiomyopathy. Transposition of the great arteries 
leads to a special situation in which the RV is faced with increased 
afterload and the LV with a much lower pressure than normal, 
both of which may cause decreased compliance (52). A summary 
of lesions and the changes in various parameters used to quantify 
DD is provided in Table 1.

TeTRALOGY OF FALLOT

As with the left ventricle, the right ventricle can become stiff 
and restrictive due to hypertrophy. In Tetralogy of Fallot, the 
RV becomes a stiff conduit due to RV outflow tract obstruction, 
with poor diastolic function. This is evidenced by anterograde 
pulmonary flow with atrial contraction (end-diastolic forward 
flow in the PA). The presence of DD is a marker of poor 
short-term surgical outcome. In a study of 50 children with 
TOF (mean age 5.0  years), 24 had restrictive RV physiology 
as described. This correlated with lower E/A ratio and IVRT 
duration. DD also correlated with prolonged intensive care 
unit stay, longer duration of ionotropic support, and higher 
doses of diuretics. It was more commonly seen in patients after 
transannular patch repair (53). In a study of 112 patients, 50 
were found to have a restrictive RV. This was associated with 
larger RV dimensions and RA dimensions, and increased LA 
length and LA indexed volume on echocardiography (54). There 
appeared to be a bigger effect on late filling than early filling 
of the LV and RV restriction appeared to affect LV filling and 
diastole (decreasing filling and increasing diastolic pressures). 
This may be due to mechanical effects of the RV on LV filling or 
increased fibrosis of the LV. Interestingly, children with restric-
tive RV have an increased RV volume, whereas adults have a 
reduced volume (55–57). After the initial period, restrictive RV 
physiology appears to be protective, with decreased duration of 
pulmonary regurgitation and better maximum oxygen uptake 
seen in patients with restriction (58).
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SiNGLe veNTRiCLe

The Fontan procedure suddenly offloads a previously volume-
overloaded ventricle. There is evidence that even in patients 
with normal systolic function, diastolic function is impaired 
(59). This is correlated with the length of time since the Fontan 
operation and decreases over time. Both left and right systemic 
single ventricles appear to experience systolic and DD, although 
systemic right ventricular function is more depressed (60). This 
may be due to adverse remodeling of the right ventricle, which 
is being exposed to an abnormally high afterload. A study of 
28 patients showed a significant correlation between LV filling 
pressures (measured by E/e′ ratio) and ventilatory efficiency 
(VE/VO2 slope) (r  =  0.93; P  <  0.01) (61). This is interesting 
as parameters of CPET are correlated with hospitalization in 
Fontan patients (62).

ATRiAL SePTAL DeFeCT (ASD)

In the presence of an ASD with normal pulmonary pressures, the 
left–right shunt results in reduced LV filling and SV, reduced tis-
sue perfusion, fluid accumulation, increased RV volume, greater 
RV SV, and finally normalization of LV filling and SV (63). In a 
small study of patients (n = 18) undergoing percutaneous device 
closure of their ASD, there were no significant changes in TDI 
and Doppler M-mode indices of diastolic function after closure. 
However, E wave velocity and E/e′ ratio at the MV annulus did 
increase significantly, thereby suggesting they are more load-
dependent parameters (64). In children with ASD, TDI velocities 
do not change immediately after device closure. There is also no 
indication of elevation of left heart filling pressures after device 
closure in children, suggesting that children are able to accept 
increased preload and preserve diastolic function (65). This has 
implications on timing of closure, suggesting that earlier closure 
is beneficial.

AORTiC STeNOSiS

In a study of patients with aortic valve disease (8–39  years), 
those with aortic stenosis or mixed disease were found to have 
DD, which was related to the degree of left ventricular hyper-
trophy (LVH). E/e′ correlated with LV end-diastolic pressure 
on catheterization. DD was found in 37% of all patients in the 
study, consisting of 37% of those with AS and 47% of those 
with mixed valve disease (66). Increased chamber stiffness is 
related to an increased LV mass/EDV ratio. Patients with aortic 
stenosis have increased interstitial fibrosis, which is related to 
a worse prognosis (67) and is known to be related to increased 
chamber stiffness. Secondary pulmonary hypertension may 
occur due to DD (68).

Cardiac magnetic resonance has a role in functional assess-
ment of the LV in patients with AS. It is also used in tissue char-
acterization and can quantify the degree of interstitial fibrosis and 
replacement fibrosis (69). There is some evidence that the degree 
of fibrosis can predict surgical outcome (67).

AORTiC ReGURGiTATiON

An incompetent aortic valve increases the end-diastolic volume 
of the left ventricle. The LV remodels to cope with this extra 
volume and becomes more compliant, so that diastolic pressures 
remain normal. Over time, decompensation may occur, in which 
case diastolic pressures increase as the LV loses the ability to 
compensate further (70). This is due to increased myocyte cellular 
diameter and fibrous content of the myocardium (71).

In aortic regurgitation with normal diastolic function, MV 
inflow consists of predominant E wave filling and annular e′ is 
increased or normal due to increased LV SV. However, E/e′ is not 
increased and PA pressures are normal. With the onset of DD 
(DD), LV filling pressures are elevated on exercise initially and 
then at rest.

MiTRAL STeNOSiS

Mitral stenosis results in increased LV filling pressure and 
reduced LV filling due to the restriction of blood flow through 
the MV. Most patients have normal intrinsic systolic and dias-
tolic myocardial function. Some studies have found DD using 
conductance catheters, which are independent of loading condi-
tions and acutely reversed after balloon valvuloplasty (72). The 
mechanism for this is not clear and may be due to restriction of 
LV relaxation by an immobile and thickened MV.

MiTRAL ReGURGiTATiON

In isolated MR, LV compliance usually decreases as it dilates to 
accommodate an increased volume (73). In acute MR, increased 
LV diastolic pressure is due to increased LV dilatation and a 
shift upward on the pressure–volume relationship. Chronic MR 
often leads to remodeling and LV dilatation, thereby retaining 
LV SV (74).

MR, in the absence of LV DD, will cause an increase in E/A 
ratio (>1) and increase in transmitral E velocity (75). The e′ 
velocity is also increased, and E/e′ is not indicative of filling pres-
sures (76). However, A reversal wave velocity does relate to LV 
diastolic pressures independently of MR (77). The ratio of IVRT 
to TE–e′ can also be used to assess diastolic function irrespective 
of MR (77).

CARDiOMYOPATHieS

HF with Preserved ejection Fraction 
(HFpeF)
One theory of the mechanism of HFpEF is that it is caused by 
DD. Increased LV filling pressures cause back pressure on the 
pulmonary circulation, leading to symptoms of HF, including 
breathlessness. This is assumed to be the case as EF remains in 
the normal range, which is thought to denote normal systolic 
function (78). However, there have been studies which show that 
symptoms of HF in these patients correlate with left ventricular 
end-diastolic volume and that the SV is only maintained due to 
LV dilatation. The mechanism postulated is that of excessive LV 
diastolic dilatation by fiber slippage and creep (79).
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The process of LV remodeling to compensate for decreased 
systolic function in these patients occurs due to feedback from 
the periphery, causing the heart to adapt with an increase in 
volume to maintain SV (80). Therefore, an EF of 20% in a dilated 
ventricle may produce the same SV of a normally sized ventricle 
with a normal EF (81). Patients with LVH manage to avoid this 
excessive distension and may be more prone to HF with reduced 
EF (76). Symptoms of HF, such as breathlessness on exertion, are 
not related to PCWP (82) or systolic function (83). Instead, the 
determinants appear to be musculoskeletal status, body compo-
sition, motivation, and tolerance of discomfort (82). Therefore, 
using symptoms alone to determine whether a patient has HF 
may not be valid.

A number of problems with the definition of HFpEF have 
been highlighted above; HF may not be reliably diagnosed using 
symptoms alone, and a preserved EF does not always correlate 
with normal systolic function. The notion of this type of disease 
being the definitive model for DD is flawed.

Hypertrophic Cardiomyopathy
Diastolic dysfunction is well recognized in hypertrophic cardio-
myopathy, due to the active component of actin–myosin dissocia-
tion in the early filling phase and the passive compliance of the 
left ventricle (84–87). DD causes a reduced rate and magnitude 
of LV filling and reduced SV. This results in elevation of LV 
end-diastolic pressures leading to symptoms of HF. Evaluation 
of diastolic function is similar to other conditions, with values 
and ratios changing with severity as expected. In some patients, 
a restrictive phenotype is present, characterized by increased 

mitral inflow E/A ratio, reduced DT, and increased pulmonary 
vein A reversal wave velocity (88). TDI may help to distinguish 
mild disease in the seemingly normal hearts of disease-causing 
gene carriers (89, 90).

CONCLUSiON

Diastolic dysfunction is a characteristic of many types of con-
genital heart disease as well as of infancy and the aging heart. 
Thorough and thoughtful evaluation of diastolic function can 
help to explain symptoms and affect the treatment of patients 
with seemingly normal ventricular function. Ventricular func-
tion should be thought of as a combination of ventricular filling 
as well as systolic ejection so that the contribution of ventricular 
compliance to overall heart function is taken into account. Finally, 
loading conditions and effects of exertion should be taken into 
account during evaluation.
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