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This review summarizes the current literature and the open questions regarding the physiology and pathophysiol-
ogy of the mechanical effects of heart rate on the vessel wall and the associated molecular signaling that may
have implications for patient care. Epidemiological evidence shows that resting heart rate is associated with car-
diovascular morbidity and mortality in the general population and in patients with cardiovascular disease. As a
consequence, increased resting heart rate has emerged as an independent risk factor both in primary prevention
and in patients with hypertension, coronary artery disease, and myocardial infarction. Experimental and clinical
data suggest that sustained elevation of heart rate—independent of the underlying trigger—contributes to the
pathogenesis of vascular disease. In animal studies, accelerated heart rate is associated with cellular signaling
events leading to vascular oxidative stress, endothelial dysfunction, and acceleration of atherogenesis. The un-
derlying mechanisms are only partially understood and appear to involve alterations of mechanic properties
such as reduction of vascular compliance. Clinical studies reported a positive correlation between increased rest-
ing heart rate and circulating markers of inflammation. In patients with coronary heart disease, increased rest-
ing heart rate may influence the clinical course of atherosclerotic disease by facilitation of plaque disruption and
progression of coronary atherosclerosis. While a benefit of pharmacological or interventional heart rate reduc-
tion on different vascular outcomes was observed in experimental studies, prospective clinical data are limited,
and prospective evidence determining whether modulation of heart rate can reduce cardiovascular events in
different patient populations is needed. (J Am Coll Cardiol 2010;56:1973–83) © 2010 by the American College
of Cardiology Foundation

Resting heart rate is an easily accessible clinical parameter.
From vascular risk factors to endothelial function, coronary
blood flow to atherosclerotic plaque development, plaque
rupture, and myocardial infarction, heart rate affects several
stages of the cardiovascular disease continuum (1–5). The
initiation of the heart beat by spontaneous sinoatrial node
depolarization is determined by voltage-sensitive membrane
currents, particularly the hyperpolarization-activated pace-
maker current I(f), and by calcium release from the sarco-
plasmic reticulum, leading to diastolic depolarization
through activation of the sodium-calcium exchanger cur-
rent. The I(f) current was first described almost 30 years ago

(6); f stands for “funny” because of the unusual properties of
I(f) relative to other systems known at the time. These
properties comprise mixed permeability to sodium and
potassium ions, activation by hyperpolarization, and slow
activation and deactivation kinetics (7). The sinoatrial node
responds to physical and mental activity or sleep states
through the autonomic nervous system and circulating
hormones, which integrate notably cardiorespiratory and
baroreceptor, but also more complex inputs such as emo-
tion, exercise, and stress (for review, see DiFrancesco [7]
and Verrier and Tan [8]). Therefore, increased heart rate
reflects increased sympathetic and/or decreased vagal tone
and, indirectly, life-style such as psychosocial stress or lack
of physical training.

Recent data are available from epidemiological studies
and randomized clinical trials focusing on the prognostic
value of heart rate. Experimental and clinical evidence
suggests that sustained elevation in heart rate plays a role in
the pathogenesis of atherosclerosis, affecting initiation and
progression as well as the severity of the disease. Experi-
mental studies demonstrate several vascular responses ac-
counting for the detrimental effects of accelerated heart rate.
However, available mechanistic molecular data are surpris-
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ingly sparse in the light of the
importance of heart rate for vas-
cular physiology. This article re-
views the effects of heart rate on
vascular homeostasis and hemo-
dynamics that eventually lead to
the phenotype of atherosclerotic
disease.

Epidemiology of
Elevated Heart Rate

In the Framingham study, car-
diovascular and coronary mortal-
ity increased progressively with
resting heart rate in a cohort of
5,070 subjects free from cardio-

vascular disease at the time of entry into the study. The
effect of heart rate on mortality was independent of tradi-
tional cardiovascular risk factors (9–13). Other studies
confirm the prognostic importance of resting heart rate for
morbidity and mortality in patients with established coro-
nary artery disease (14,15). The Coronary Artery Surgery
Study registry assessed the relationship between resting
heart rate and cardiovascular mortality in approximately
25,000 subjects with suspected or proven coronary artery
disease over a median follow-up of 15 years. Multivariate
analysis revealed that patients with a resting heart rate !83
beats/min had a significantly higher risk of cardiovascular
mortality than subjects with a resting heart rate !62
beats/min (16). Recently, the analysis of a pre-specified
subgroup of the BEAUTIFUL (morBidity-mortality
EvAlUaTion of the If inhibitor ivabradine in patients with
coronary disease and left-ventricULar dysfunction) trial
demonstrated that in patients with coronary heart disease
and left ventricular systolic dysfunction, a resting heart rate
!70 beats/min was associated with an increased cardiovas-
cular mortality as well as increased risk for hospitalization
due to heart failure, myocardial infarction, or need for
coronary revascularization (17). In subsequent analyses, the
increased heart rate was largely associated with coronary
vascular events, but not with heart failure (18,19). The
INTRINSIC RV (Inhibition of Unnecessary RV Pacing
With AV Search Hysteresis in ICDs) trial followed 1,530
patients after implantation of a dual-chamber implantable
cardioverter-defibrillator and found that intrinsic (unpaced)
heart rate was strongly and independently associated with
the composite end point of heart failure hospitalization and
total mortality (20). Taken together, there is compelling
epidemiologic evidence that elevated resting heart rate is
predictive of cardiovascular risk, independently of the other
currently accepted risk factors or characteristics.

Pathophysiology of Elevated Heart Rate

Shear stress and vascular signaling responses. Shear
stress is the tangential force in the direction of blood flow,

generated by flow velocity over the vascular surface and
expressed in units of force/unit area (dyne/cm2) (for review,
see Davies [21] and Chatzizisis et al. [22]). Local shear
stress is sensed by endothelial mechanoreceptors, induces
endothelial gene expression, and thereby determines vascu-
lar phenotypes that promote atherosclerosis susceptibility or
atherosclerosis protection. High shear stress promotes adap-
tive vascular dilation (flow-mediated dilation), for example,
by induction of endothelial nitric oxide synthase (eNOS)
transcription and translation (23). Endothelial cells respond
to variations in shear stress. Vascular regions with oscillating
shear stress and flow reversal correspond with pathologic
changes in the artery wall and are at risk for atherosclerosis,
whereas sustained laminar flow and high shear stress con-
serve atheroprotective signaling (21,24).

Evidence for a close relation between shear stress and
heart rate originates from in vitro studies that suggest that
shear waveform, and in particular, shear frequency can
influence endothelial cell gene expression profiles. Several
studies compared the impact of steady laminar shear and
“realistic” arterial (pulsatile) waveforms on endothelial me-
tabolism and report an increased expression of proinflam-
matory, proapoptotic, and procoagulant transcripts (25,26)
and a reduction of eNOS expression under pulsatile wave-
forms (27). Himburg et al. (28) examined the frequency-
dependent response of aortic endothelial cells to pulsatile
shear stress. A shear frequency of 2 Hz induced a proin-
flammatory phenotype characterized by up-regulation of
monocyte chemoattractant protein-1, intercellular adhesion
molecule-1, and vascular cell adhesion molecule-1, which
was most pronounced under reversing and oscillatory shear.
A “physiological” frequency of 1 Hz repressed inflammatory
transcripts and induced several atheroprotective transcripts
(28). In cultured endothelial cells, cyclic stretch was found
to increase the endothelial expression of p22phox, a
membrane-bound subunit of the superoxide-producing nic-
otinamide adenine dinucleotide phosphate (NADPH)-
oxidase, which is fundamental for the formation of reactive
oxygen species. Endothelial cells treated with inhibitors of
the NADPH-oxidase had reduced superoxide production in
response to stretch (29).

Mechanical forces also play an essential role in vascular
smooth muscle cells (VSMC) in the vessel media (30,31). In
cellular models and in vitro studies using VSMC cultured
on deformable substrates, the effect of cyclic strain on
mechano- and signal transduction has been investigated,
including altered cell proliferation, alignment, and protein
expression. Among these, up-regulation of extracellular
matrix proteins (fibronectin [32], collagen [33]), growth
factors (34), and osteogenic markers (35) was linked to a
vascular phenotype characterized by increased stiffness.
Moreover, several studies have indicated that cyclic strain
also amplifies oxidative stress in VSMC. In human coronary
artery VSMC exposed to pulsatile strain, the observed time-
and strain-dependent increase in superoxide production was
inhibited by NADPH-oxidase inhibitors but not by xanthine
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oxidase or cyclooxygenase inhibitors (36). In cultured vessels,
stretch of 10% and 20% increased generation of reactive oxygen
species in contrast to a 5% cyclic stretch (37).

In the context of these results, it could be speculated that
persons whose arteries are chronically subjected to a partic-
ular range of shear frequencies, such as those with high
resting heart rates, may be at greater risk for atherosclerotic
lesion development. However, while the hypothetical asso-
ciation between shear stress and heart rate appears to be
plausible, substantial experimental evidence is still lacking.
Endothelial dysfunction and increased heart rate. Be-
cause of its exposed location at the inner vessel wall, the
endothelial monolayer acts as a mechanosensitive gate-
keeper and a signal transduction interface for hemodynamic
forces. These forces determine the shape and function of
endothelial cells, allowing the vessel to cope with (patho-)
physiological conditions (for review, see Berk [24] and
Bundey [38]). Disturbance of endothelial function is con-
sidered a key event in the development of atherosclerosis
and implies a change from the normally predominant
release of nitric oxide to that of endothelium-derived
contracting factors (39,40). Endothelial dysfunction has
been identified as a common consequence of different
cardiovascular risk factors and plays a pivotal role in the
development, progression, and clinical manifestations of
atherosclerotic disease (40,41).

To investigate a potential mechanistic link between heart
rate and endothelial function, cholesterol-fed apolipopro-
tein (Apo) E"/" mice, a disease model for endothelial
dysfunction, were treated with ivabradine, an inhibitor of
the I(f) channel in the sinoatrial node, which reduced heart
rate by 13.4% and significantly improved endothelial-
dependent vasorelaxation in isolated aortic ring preparations
(Fig. 1). The improvement of endothelial function was
independent of blood pressure or lipid levels (42). Experi-
ments by Drouin et al. (43) add to these findings, showing
that in dyslipidemic mice expressing the human ApoB-100,
heart rate reduction with ivabradine prevented endothelial
dysfunction in renal and cerebral arteries. Similarly, phar-
macological reduction of heart rate improved endothelial
function in isolated corpora cavernosa, where endothelial
cell function determines erectile capacity. The treatment
was effective both as prevention as well as treatment of
erectile dysfunction (44). Taken together, these studies in
different mouse models and different vascular beds consis-
tently show that mild heart rate reduction (13% to 17%)
protects endothelial-dependent vasorelaxation. In the study
by Drouin et al. (43), the impairment of acetylcholine-
induced, endothelium-dependent vasodilation of cerebral
and renal arteries was restored by ivabradine, but not by
metoprolol dosed to equally reduce heart rate. Therefore, it
appears possible that ivabradine may exert vasoprotective
effects in addition to heart rate reduction; however, this is a
question of ongoing research (45).

An increased formation and/or release of reactive oxygen
species appears to be a common denominator underlying

endothelial dysfunction and is 1 of the key events in the
pathogenesis of atherosclerosis (46). Indeed, ivabradine-
induced heart rate reduction in ApoE"/" mice was associ-
ated with inhibition of NADPH-oxidase activity and su-
peroxide release. In addition, vascular lipid peroxidation as a
global marker of oxidative stress was decreased (42). The
central characteristic of a dysfunctional endothelium is a
reduced availability of NO. Restoration of impaired endo-
thelial function by pharmacological interventions (e.g., st-
atins) is associated with a restoration of endothelial NO
production (47,48). However, aortic tissue of ApoE"/"

mice treated with ivabradine did not exhibit a significant
up-regulation of eNOS expression (42). In contrast, ivabra-
dine treatment up-regulated eNOS expression in the cor-
pora cavernosa of ApoE"/" mice (44). Even though a direct

Figure 1 Endothelial Function of Wild Type and ApoE"/" Mice

In wild type (WT) mice (squares) and in apolipoprotein (Apo) E"/" mice after 6
weeks of treatment with cholesterol-rich diet with ivabradine (Iva), 10 mg/kg/
day (down-pointing triangles) or vehicle treatment (up-pointing triangles), aor-
tic segments were isolated, and their functional performance was assessed
in organ chamber experiments. Heart rate reduction improved endothelium-
dependent vasodilation induced by carbachol (A). Endothelium-independent
vasorelaxation induced by glyceroltrinitrate was similar in all groups (B). Both
were expressed as percent of maximal phenylephrine-induced vasoconstriction.
Mean # SEM, n $ 10 per group. !p % 0.05 versus ApoE vehicle. Adapted
from Custodis et al. (42).
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involvement of eNOS was not reported, Drouin et al. (43)
showed in dyslipidemic mice that vasodilation of renal
arteries induced by acetylcholine was sensitive to eNOS
inhibition by N"nitro-L-arginine, indicating at least a
partial contribution of NO to ivabradine-induced improve-
ment of endothelial function. Recchia et al. (49) also found
a significant decrease of cardiac NO production after 3
weeks of rapid pacing in dogs with pacing-induced heart
failure.

The clinical data on endothelial function affected by heart
rate are not yet conclusive. In a large cohort of Framingham
Study participants, heart rate was positively associated with
brachial artery flow-mediated dilation (FMD) (50). Several
studies that explicitly looked at heart rate and FMD showed
an inverse relation between heart rate and FMD but are
severely limited by the small number of subjects examined
(51–54). Therefore, prospective clinical studies to determine
the role of resting heart rate in FMD and to test the effect
of randomized heart rate reduction on FMD are needed.

Increased levels of circulating markers of inflammation
such as high-sensitivity C-reactive protein are associated
with endothelial dysfunction and future cardiovascular risk
(55). Two population-based studies reported a positive
correlation between increased resting heart rate and markers
of inflammation (C-reactive protein, white blood cell count,
and fibrinogen) in apparently healthy subjects (56,57).
Thus, increased heart rate may contribute to endothelial
dysfunction by up-regulation of inflammatory cytokines.
Microalbuminuria is a marker of generalized endothelial
injury and correlates with renal and cardiovascular end organ
damage (58,59). In a recent analysis of the I-SEARCH (The
International Survey Evaluating Microalbuminuria Routinely
by Cardiologists in Patients with Hypertension) study, an
observational study in hypertensive patients, heart rate was a
strong predictor for the prevalence of microalbuminuria, even
after adjustment for hypertension and risk factors such as
pre-existing cardiac disease, diabetes mellitus, age, and sex
(60,61). In summary, the data show an association of heart rate
with circulating markers of vascular inflammation; however,
the underlying molecular mechanisms are not known.
Vascular structure and increased heart rate. Blood vessels
adapt to mechanical demands and remodel by changing
their geometry, structure, and elastic properties. Compli-
ance, defined as change in volume (dV) for a given change
in distending pressure (dP), or dV/dP, decreases steadily
with vascular aging (62). Aortic stiffness, namely, the
inverse of compliance, predicts cardiovascular morbidity and
mortality in patients with essential hypertension, end-stage
renal failure, or diabetes mellitus (63,64). Experimental
evidence for a link between arterial compliance and heart
rate was presented by Mangoni et al. (65), who demon-
strated that progressive increases in heart rate caused by
atrial pacing in rats led to marked reductions in carotid
artery compliance. The stiffening effect of tachycardia
was shown to be independent of sympathetic tone (66).
Sa Cunha et al. (67) found a significant positive link

between high heart rate and arterial stiffness measured at the
site of central and lower limb arteries by pulse wave velocity
measurements and high-resolution echo tracking. These
findings are in line with a study of Giannattasio et al. (68),
who showed that radial and carotid artery distensibility (an
index of arterial stiffness measured by vascular echo track-
ing) was decreased during pacing-induced increase of heart
rate. In treated hypertensive patients, high heart rate was
associated with an accelerated progression of arterial stiff-
ness, as estimated by carotid/femoral pulse wave velocity
(69). Other investigations report opposite heart rate-
induced effects on vascular wall mechanics. Wilkinson et al.
(70) used pulse wave analysis to calculate an augmentation
index as a measure of pressure wave reflection that accounts
for arterial stiffness in patients with permanent cardiac
pacemakers. Incremental pacing led to a linear reduction in
the augmentation index and revealed an inverse relationship
between heart rate and systemic arterial stiffness (70).
Similar results are reported by an earlier study showing
increased aortic distensibility, measured invasively by aortic
pressure recordings, by pacing induced increases in pulse
rate (71). Apparently, differences may evoke from different
methods (ultrasonic echo tracking vs. pulse wave analysis)
and parameters (arterial distensibility vs. augmentation in-
dex) that were applied. What is noticeable is that the
majority of studies reporting a positive association between
heart rate and vascular stiffness applied direct measurements
of vascular compliance (e.g., by echo tracking) rather than
pulse wave velocity or augmentation index.

At least, the reported observations suggest synergistic
effects of heart rate and arterial blood pressure on the
vasculature and the progression of atherosclerotic disease.
Predominantly at the sites of atherosclerosis-prone areas,
mechanical stress may result in pathological alterations and
even vascular “fatigue.” The concept of cumulative vascular
injury caused by fatigue was introduced by Thubrikar and
Robicsek (72) and describes a phenomenon deduced from
nonbiological materials that occurs in vessels exposed to
pulsatile pressure. At sites of stress concentration (e.g.,
vascular orifices), an accelerated heart rate potentiates the
spatial mechanic load—defined by blood pressure—and
accelerates vascular injury. Such a hypothesis was taken into
account by Bassiouny et al. (73), who used a rate-pressure
product (mean blood pressure & mean heart rate) to
quantify hemodynamic load in cynomolgus monkeys and
reported a positive relationship between hemodynamic
stress and the extent of atherosclerotic lesions in the
infrarenal aorta. Mechanistically, again, there is likely a
disturbed endothelial-dependent vasorelaxation (74,75).

Heart rate reduction by I(f)-channel inhibition in spon-
taneously hypertensive rats reduced heart rate by as much as
30%, mediated antihypertrophic effects in terms of reduc-
tion of medial cross-sectional area in the thoracic aorta, and
reduced wall stress (76). However, whereas chronic ivabra-
dine treatment attenuated maladaptive alterations, an acute

1976 Custodis et al. JACC Vol. 56, No. 24, 2010
Vascular Effects of Heart Rate December 7, 2010:1973–83



pharmacological intervention by repetitive intravenous bo-
luses of ivabradine did not affect arterial stiffness (77).

The finding that the augmentation index is influenced by
heart rate is supported by population data from a cross-
sectional study (78) and recent data from the CAFE
(Conduit Artery Function Evaluation) study (79,80). The
major finding of the CAFE study was that the beta-blocker
atenolol was less effective than amlodipine in lowering
central aortic systolic pressures, despite similar control of
brachial blood pressure. The CAFE heart rate study focused
on the importance of heart rate as a determinant of this
effect and showed that a lower heart rate induced by
beta-blockade was associated with higher aortic systolic
pressure and pulse pressure, an effect that was primarily
attributed to increased central pressure wave reflections at
lower heart rates (Fig. 2) (81). As possible mechanisms that
account for the inverse relationship between heart rate and
aortic pressure, the authors discuss an increase of central
systolic pressure attributable to a shift of the reflected wave
into late systole due to the reduction in ejection duration by
heart rate reduction, and an increased stroke volume sec-
ondary to heart rate reduction and better diastolic filling
(Frank-Starling mechanism), which is then ejected into the
proximal aorta with its windkessel function. Furthermore,
the vasoconstrictor effects of beta-blockers on the peripheral
circulation that increase pulse wave reflection have to be
considered. The CAFE heart rate analysis adds relevant
findings as it represents the first clinical trial assessing
hemodynamic effects of a pharmacological heart rate reduc-
tion in a large number of patients. In the light of the CAFE
study data, the net clinical effect of a beta-blocker–induced
heart rate reduction in hypertensions remains controversial.
Atherosclerosis and increased heart rate. Pioneering ex-
periments were conducted by Beere et al. (82,83), who
established the first evidence for a direct connection be-
tween heart rate and lipid-induced atherogenesis in cyno-
molgus monkeys with reduced heart rate after ablation of
the sinoatrial node, which exhibited reduced coronary and
carotid atherosclerosis compared with sham-operated litter-
mates. Subsequently, Kaplan et al. (84) demonstrated that
naturally occurring differences in casual heart rate in mon-
keys were related to coronary atherosclerosis; monkeys with
high heart rate exhibited atherosclerotic lesions more than
twice as extensively as low heart rate littermates. In another
study, the same authors reported a significant association
between the extent of heart rate response to psychological
stress and the degree of coronary atherosclerosis in the same
species (85). Korshunov and Berk (86) characterized carotid
outward remodeling and intima-media thickening in differ-
ent inbred mouse strains. Vascular remodeling was highly
dependent on genetic determinants and hemodynamic fac-
tors (86). Among these, heart rate, but not systolic blood
pressure, was predictive for increased intima-media thick-
ening. Recent data in ApoE"/" mice established that heart
rate reduction by ivabradine decreased atherosclerotic

plaque size in the aortic root and in the ascending aorta (42).
Ivabradine prevented atherogenesis when given simulta-
neously with a high cholesterol diet but also was effective to
reduce plaques size when given to animals 4 weeks after
initiation of a high-cholesterol diet (44). In this model,
pharmacological heart rate reduction led to a reduction of
the vascular expression of monocyte chemoattractant

Figure 2 Changes of Vascular Physiology
in Response to Heart Rate Reduction

Heart rate reduction increases central systolic blood pressure (SBP) augmenta-
tion for an identical pulse height of the forward-ejected pressure wave and the
same reflected pressure wave. ED $ ejection duration; T0 $ onset of the
forward-ejected wave; Tr $ time to return at the aorta of the backward-reflected
wave from T0. Adapted from Safar et al. (81).
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protein-1. Monocyte chemoattractant protein-1 has been
shown to be regulated by hemodynamic properties such as
shear stress and cyclic strain (up-regulated by proatheroscle-
rotic shear patterns) (87,88). While animal studies provide
growing mechanistic evidence for the link between heart
rate and an atherosclerotic phenotype, clinical data are
limited. Perski et al. (89,90) studied the progression of
coronary artery lesions in men who survived a myocardial
infarction before the age of 45 years and reported a
significant correlation between heart rate and the severity
and progression of coronary atherosclerosis.

The contribution of heart rate reduction to the clinical
effects of beta-blockers and calcium-channel blockers has
been analyzed in several studies. A meta-regression analysis
of 25 randomized clinical trials (21 with beta-blockers and
4 with calcium-channel blockers; n $ 30,904 patients)
performed by Cucherat (91) suggests that the beneficial
effect of beta-blockers and calcium-channel blockers in
post-myocardial infarction patients is proportionally related
to the reduction of resting heart rate. Sipahi et al. (92)
recently reported a post-hoc analysis of data from 4 intra-
vascular ultrasonography studies showing that beta-blocker
treatment is associated with a reduction of the progression
of coronary atherosclerosis. The beta-blocker group showed
a heart rate reduction by 2.7 beats/min (4%) but no
difference in blood pressures compared with placebo (92).
The association of beta-blockers with a reduced progression
rate remained statistically significant after adjustment for
average heart rates during treatment. The investigators
suggest that reduced heart rate may not be the only
mechanism responsible for the beneficial effects of beta-
blockers on atherosclerosis and propose that reduced affinity
of low-density lipoprotein cholesterol to vessel wall proteo-
glycans and blunting of the catecholamine-induced in-
creases in endothelial permeability to lipoproteins may be
alternative mechanisms of action. Bangalore et al. (93)
analyzed 9 randomized studies evaluating beta-blockers for
hypertension. In contrast to the findings in patients with
myocardial infarction or heart failure, the meta-analysis
found that beta-blocker–associated reduction in heart rate
increased the risk of cardiovascular events and death for
hypertensive patients. This analysis is driven by atenolol,
which was used as beta-blocker in 78% of patients and has
an inferior hemodynamic and metabolic profile compared
beta-blockers with vasodilating properties. However, the
existing data do not provide evidence for a beneficial effect
of heart rate reduction using beta-blockers. In addition to
the limitations of the retrospective clinical analyses of this
question, the importance of heart rate reduction is difficult
to interpret because of the very significant vascular effects of
these drugs in addition to their impact on heart rate.
Although beta-blocker treatment was reported to exert
antiatherosclerotic effects in different species (for review, see
Kaplan and Manuck [94] and Bondjers [95]), the molecular
mechanisms were not studied, and possible negative effects
of comparators such as hydralazine are not excluded (96).

Therefore, to assess the importance of a pharmacological
heart rate reduction for the prevention of atherosclerosis
progression in patients with coronary heart disease, a pro-
spective clinical trial with an I(f) inhibitor, for example,
using intravascular ultrasonography may be an important
next step.
Heart rate and myocardial oxygen supply. In the coronary
arteries, blood flow is determined by the pressure gradient
between the diastolic pressure in the aortic root, the right
atrial pressure, and the duration of the diastole (1). Both the
driving pressure gradient and the duration of diastole are
integrated into the diastolic pressure-time integral reflecting
the driving force for coronary blood flow. Due to its
mechanical determinants, largely the phasically-contracting
myocardium, coronary blood flow is pulsatile and occurs
mostly during diastole (1). Increases in heart rate are
associated with over-proportionate decreases in diastolic
duration and, as a consequence, coronary perfusion and
myocardial oxygen supply are reduced. Increases in coronary
blood flow through metabolic coronary vasodilation in
normal, nonstenotic coronary arteries act in concert with the
reduction of blood flow in post-stenotic myocardium, sec-
ondary to abbreviated diastolic duration; in consequence,
the driving gradient for collateral blood flow is reduced, and
a marked reduction in post-stenotic blood flow ensues
(Fig. 3) (1). Conversely, reduction of heart rate favorably
redistributes myocardial blood flow toward the ischemic
region (97) and finally reduces also infarct size (98,99).
Clinically, precipitation of myocardial ischemia becomes
eminent in diseased coronary arteries, where an increase in
heart rate may lead to angina and myocardial ischemia
(100–102).
Heart rate and coronary plaque instability. The charac-
teristics of coronary shear stress are determined by the pulsatile
nature of coronary flow. Shear stress attains a low and oscilla-
tory pattern during systole followed by a diastolic increase to a
diastolic maximum (103,104). In regions of low shear stress,
progressive atherosclerosis and outward remodeling develop
(105). Although an experimental and definite verification is
lacking and a direct effect of heart rate on shear stress has not
been investigated, one could speculate that as a consequence of
a shorter diastole in regions susceptible to atherosclerosis,
protective diastolic shear stress is reduced, resulting in longer
periods of systolic shear stress.

In a retrospective analysis, Heidland et al. (106) investi-
gated data from 106 patients who underwent subsequent
coronary angiographies within 6 months. They analyzed 53
patients with initially smooth stenotic lesions in which
plaque disruption developed by the time of the second
coronary angiogram, and compared these patients with
matched subjects exhibiting smooth stenoses without an-
giographic signs of plaque disruption. Logistic regression
analysis identified positive associations between plaque dis-
ruption and a mean heart rate !80 beats/min and a negative
association with the use of beta-blockers (106). This im-
portant clinical finding may be at least partially explained by
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a dynamic coronary geometry and alternating dynamic
changes imposed on the vessel during the cardiac cycle that
may contribute to the initiation and development of coro-
nary atherosclerosis (107). The motion of the coronary
arteries during the cardiac cycle—primarily of the epicardial
segments—is characterized by phasic bending of the curva-
tures and periodically changing torsion of the vessel directly
affecting hemodynamic properties (107). Yang et al. (108)
applied computational MRI-based models to characterize
mechanical stress imposed on coronary atherosclerotic
plaques and identified cyclic bending as a relevant stressor in
rupture-prone areas. Other types of mechanical stress af-
fecting plaque morphology are circumferential wall stress
and repetitive tensile stress, which have been shown to
facilitate and to trigger coronary plaque rupture (109). At
least tensile stress was shown to stimulate matrix metallo-
proteinase-1—a key player in extracellular matrix degrada-
tion and plaque rupture—in coronary artery lesions (110).
Consistently, hemodynamic factors that may precipitate
plaque disruption are characterized by pulsatility and fre-
quency of mechanical stress and are at least defined by the
duration/length of the cardiac cycle.

Vascular growth and increased heart rate. Angiogenesis
and arteriogenesis are natural defense mechanisms to
compensate for arterial stenosis or occlusion (97,111).
Thus, stimulating vascular growth is a promising thera-
peutic goal in arterial occlusive disease (112,113). Using
bradycardic pacing in a rabbit model, a proangiogenic
effect of heart rate reduction was described as early as
1981 (114). More recently, enhanced vascular endothelial
growth factor expression was shown to be critical in
bradycardia-induced angiogenesis (115). Up-regulation
of vascular endothelial growth factor is thought to be
induced by cardiac myocyte stretch (116). In a dog model
of gradual coronary occlusion, bradycardia increased ar-
teriogenesis, which was accompanied by an up-regulation
of Tie-2 and vascular endothelial growth factor (117).
Again, longer duration of diastole with increased shear
stress as well as myocardial stretch are discussed as
responsible mechanisms. However, no data on the effects
of bradycardia and reduced pulse pressure frequency on
vascular growth in the peripheral circulation are available.
Collateral artery growth is a NO-dependent process
(118). Conceivably, improved endothelial function and

Figure 3 Change in Driving Pressure Gradient for Collateral Blood Flow and Microvascular Resistance

Schematic representation of changes in the driving pressure gradient for collateral blood flow and of microvascular resistance in normal myocardium (left) and in post-
stenotic myocardium (right). There is an autoregulatory decrease in microvascular resistance of the post-stenotic myocardium. With increasing heart rate, metabolic
vasodilation and a decrease of microvascular resistance occur in healthy myocardium, resulting in decreased pressure at the origin of collaterals. In contrast, in post-
stenotic myocardium, no further dilation is possible, and the reduction in diastolic duration prevails; subsequently, microvascular resistance and the pressure at the ori-
fice of collaterals into the post-stenotic coronary vasculature are increased. Periph. $ peripheral. Adapted from Heusch (1).
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up-regulation of NO may also stimulate arteriogenesis in
the noncoronary vascular bed.

Conclusions and Perspective

Heart rate has emerged as an independent risk factor both
in primary prevention and in patients with hypertension,
coronary artery disease, and myocardial infarction (Fig. 4)
(119–126). Available data support a strong association
between elevated heart rate and negative cardiovascular
effects. Increased heart rate impairs endothelial function in
animal models and may contribute to reduced shear stress
and vascular compliance. Heart rate reduction by sinus node
ablation or pharmacological intervention by I(f)-channel
inhibition reduces the formation of atherosclerotic plaques
in animal models of lipid-induced atherosclerosis. By pro-
longing diastole and improving endothelial function, re-
duced heart rate stimulates vascular growth. While these
experimental data provide considerable descriptive evidence
of the pathophysiological concept, the current mechanistic
understanding of the underlying molecular mechanisms war-
rants further investigation. However, prospective clinical evi-

dence regarding the effects of heart rate reduction on cardio-
vascular events is lacking. Importantly, transition from
experimental results to clinical evidence has to be further
established, particularly to clarify whether pharmacological
heart rate reduction might be beneficial for the prevention of
atherosclerotic disease. Ongoing clinical trials and registries
will further consider the role of heart rate and heart rate
reduction in patients with coronary artery disease (127–129).
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