Multimodality Imaging Guidelines of Patients with Transposition of the Great Arteries: A Report from the American Society of Echocardiography Developed in Collaboration with the Society for Cardiovascular Magnetic Resonance and the Society of Cardiovascular Computed Tomography

Meryl S. Cohen, MD, FASE (Chair), Benjamin W. Eidem, MD, FASE (Co-Chair), Frank Cetta, MD, FASE, Mark A. Fogel, MD, Peter C. Frommelt, MD, FASE, Javier Ganame, MD, PhD, FASE, B. Kelly Han, MD, Thomas R. Kimball, MD, FASE, Rebecca K. Johnson, RDMS, FASE, Luc Mertens, MD, PhD, FASE, Stephen M. Paridon, MD, Andrew J. Powell, MD, FASE, and Leo Lopez, MD, FASE, Philadelphia, Pennsylvania; Rochester and Minneapolis, Minnesota; Milwaukee, Wisconsin; Hamilton and Toronto, Ontario, Canada; Cincinnati, Ohio; Boston, Massachusetts; and Miami, Florida

(J Am Soc Echocardiogr 2016;29:571-621.)

Keywords: Congenital heart disease, Transposition of the great arteries, Arterial switch operation, Atrial switch operation, Rastelli operation, Nikaidoh operation

TABLE OF CONTENTS

Executive Summary 572
Goals of Imaging 572
Imaging Modalities 572
Echocardiography 572
Cardiovascular Magnetic Resonance 572
Cardiovascular Computed Tomography 572
Nuclear Scintigraphy 572
Exercise and Stress Imaging 572
Cardiac Catheterization and Angiography 572
Background 573
General Considerations 576
Goals of Imaging 576
Echocardiography 576
Overview of Modality 576
Strengths and Limitations 576
Preoperative Assessment of TGA with Echocardiography 576
Postoperative Assessment of TGA with Echocardiography 584
Assessment of Ventricular Function after the ASO and AtrSO 594

CMR Imaging 596
Overview of Modality 596
Strengths and Limitations 596
Preoperative Assessment of TGA with CMR 597
Postoperative Assessment of TGA with CMR 597
Cardiovascular CT 605
Overview of Modality 605
Strengths and Limitations 606
Preoperative Assessment of TGA with CT 606
Postoperative Assessment of TGA with CT 606
Nuclear Scintigraphy 609
Overview of Modality 609
Strengths and Limitations 609
Postoperative Assessment of TGA with Nuclear Scintigraphy 609
Exercise and Stress Echocardiography 610
Overview of Modality 610
Strengths and Limitations 610
Evaluation of Myocardial Perfusion 610

From The Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania (M.S.C., M.A.F., S.M.P.); the Mayo Clinic, Rochester, Minnesota (B.W.E., F.C., R.K.J.); the Medical College of Wisconsin, Milwaukee, Wisconsin (P.C.F.); McMaster University, Hamilton, Ontario, Canada (J.G.); the Minneapolis Heart Institute, Children’s Heart Clinic at the Children’s Hospitals and Clinics of Minnesota, Minneapolis, Minnesota (B.K.H.); Cincinnati Children’s Hospital, Cincinnati, Ohio (T.R.K.); The Hospital for Sick Children, Toronto, Ontario, Canada (L.M.); Boston Children’s Hospital, Boston, Massachusetts (A.J.P.); and Nicklaus Children’s Hospital, Miami, Florida (L.L.).

All authors reported no actual or potential conflicts of interest in relation to this document.

Attention ASE Members:
The ASE has gone green! Visit www.aseuniversity.org to earn free continuing medical education credit through an online activity related to this article. Certificates are available for immediate access upon successful completion of the activity. Nonmembers will need to join the ASE to access this great member benefit!

Reprint requests: American Society of Echocardiography, 2100 Gateway Centre Boulevard, Suite 310, Morrisville, NC 27560 (E-mail: ase@asecho.org).
0894-7317/36.00
Copyright 2016 by the American Society of Echocardiography.
http://dx.doi.org/10.1016/j.echo.2016.04.002
Goals of Imaging

The goals of imaging in patients with TGA are to provide accurate and reproducible anatomic and hemodynamic information that facilitate medical and surgical planning and to provide surveillance imaging to evaluate potential issues related to the type of surgical operation that has been chosen.

Imaging Modalities

We review each imaging modality used in the diagnosis and follow-up of patients with TGA including the strengths, limitations, and clinical utility. We also define an optimal imaging protocol for each modality. In addition, an integrated multimodality imaging algorithm is defined and discussed.

EXECUTIVE SUMMARY

Transposition of the great arteries (TGA) is a congenital heart defect with ventriculoarterial discordance in which the aorta is aligned with the right ventricle and the pulmonary artery is aligned with the left ventricle. When atroventricular (AV) concordance is present, this anatomy results in cyanosis because the systemic and pulmonary circulations are in parallel. The clinical diagnosis and management of patients with TGA has improved dramatically over the past three decades because of the evolution and availability of multiple imaging modalities and strides made in the surgical management of these patients. Despite these technical advances, patients with TGA require long-term surveillance because of ongoing anatomic and hemodynamic abnormalities. The purpose of this report is to present guidelines for multimodality imaging in this cohort of patients.

Echocardiography

Echocardiography remains the main diagnostic imaging modality for TGA because of its widespread availability and portability. Transthoracic echocardiography (TTE) with two-dimensional (2D) and Doppler echocardiography provides comprehensive anatomic and hemodynamic evaluation in the majority of patients with TGA and is usually the only modality required for preoperative evaluation. For postoperative imaging, echocardiography is often used to assess for residual, recurrent or new pathology. Transesophageal echocardiography (TEE) is indicated in patients with poor windows, during intraoperative imaging, and in patients (usually adolescents or adults) who require cardioversion for arrhythmia.

Cardiovascular Magnetic Resonance

Cardiovascular magnetic resonance (CMR) plays a major role in the evaluation of patients with TGA. It is used primarily to image patients after surgical intervention. It provides important information regarding myocardial performance and viability as well as quantitative assessment of valvar function and accurate evaluation of baffles, conduits, and extracardiac structures such as the branch pulmonary arteries and the aortic arch.

Cardiovascular Computed Tomography

Multidetector computed tomography (CT) is typically used in patients with TGA who cannot undergo CMR. Adults with TGA who have had the atrial switch operation (AtrSO) frequently have pacemakers; thus, CT is an alternative imaging modality to provide incremental information to echocardiography.

Nuclear Scintigraphy

The primary use of nuclear imaging in patients with TGA is to assess myocardial viability or to assess blood flow to the branch pulmonary arteries after the arterial switch operation (ASO). Imaging can be performed at rest and during stress (exercise or pharmacologic) to determine if there are myocardial perfusion defects.

Exercise and Stress Imaging

Exercise testing and stress imaging are predominantly used to assess for myocardial perfusion problems in patients with TGA, particularly after the ASO. In patients with concern for coronary ischemia, stress imaging can unmask issues that are not present at rest in this population.

Cardiac Catheterization and Angiography

Diagnostic cardiac catheterization is rarely used in the preoperative evaluation of TGA but is required when balloon atrial septostomy (BAS) is performed to improve mixing and alleviate cyanosis. Some institutions use angiography to diagnose or confirm coronary artery (CA) anatomy before an ASO. Postoperative angiography is performed to assess for CA stenosis after CA reimplantation or during interventions such as branch pulmonary artery balloon dilation and stent placement. In the AtrSO, angiography is used to assess for baffle leaks or narrowing of the systemic or pulmonary venous pathways.

Abbreviations

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>ASE</td>
<td>American Society of Echocardiography</td>
</tr>
<tr>
<td>ASO</td>
<td>Arterial switch operation</td>
</tr>
<tr>
<td>AtrSO</td>
<td>Atrial switch operation</td>
</tr>
<tr>
<td>AV</td>
<td>Atrioventricular</td>
</tr>
<tr>
<td>BAS</td>
<td>Balloon atrial septostomy</td>
</tr>
<tr>
<td>CMR</td>
<td>Cardiovascular magnetic resonance</td>
</tr>
<tr>
<td>CT</td>
<td>Computed tomography</td>
</tr>
<tr>
<td>EF</td>
<td>Ejection fraction</td>
</tr>
<tr>
<td>IV</td>
<td>Intravenous</td>
</tr>
<tr>
<td>IVC</td>
<td>Inferior vena cava</td>
</tr>
<tr>
<td>LGE</td>
<td>Late gadolinium enhancement</td>
</tr>
<tr>
<td>LV</td>
<td>Left ventricular</td>
</tr>
<tr>
<td>PDA</td>
<td>Patent ductus arteriosus</td>
</tr>
<tr>
<td>PET</td>
<td>Positron emission tomography</td>
</tr>
<tr>
<td>PH</td>
<td>Pulmonary hypertension</td>
</tr>
<tr>
<td>Qp/Qs</td>
<td>Pulmonary-to-systemic flow ratio</td>
</tr>
<tr>
<td>RV</td>
<td>Right ventricular</td>
</tr>
<tr>
<td>SPECT</td>
<td>Single-photon emission computed tomography</td>
</tr>
<tr>
<td>SVC</td>
<td>Superior vena cava</td>
</tr>
<tr>
<td>TEE</td>
<td>Transesophageal echocardiography</td>
</tr>
<tr>
<td>TGA</td>
<td>Transposition of the great arteries</td>
</tr>
<tr>
<td>3D</td>
<td>Three-dimensional</td>
</tr>
<tr>
<td>TTE</td>
<td>Transthoracic echocardiography</td>
</tr>
<tr>
<td>2D</td>
<td>Two-dimensional</td>
</tr>
<tr>
<td>VSD</td>
<td>Ventricular septal defect</td>
</tr>
</tbody>
</table>
BACKGROUND

TGA is a conotruncal abnormality defined as discordant ventriculoarterial connections; the aorta arises from the right ventricle and the pulmonary artery arises from the left ventricle. This is in the setting of D-looped ventricles in situs solitus or L-looped ventricles in situs inversus. Cyanosis occurs because the systemic and pulmonary circulations run in parallel rather than in series with deoxygenated blood from the systemic veins returning directly to the aorta and oxygenated blood from the pulmonary veins returning directly to the pulmonary artery (Figure 1). The cyanosis is usually severe, resulting in early neonatal recognition, typically in the first few hours of life. TGA is in distinct contrast to corrected TGA, in which there is AV discordance in addition to ventriculoarterial discordance; this constellation of findings results in a circulation that runs in series rather than in parallel. Because the physiology and surgical strategy for corrected TGA is so different from that for TGA, this lesion will not be further discussed.

TGA occurs in approximately 31.5 in 100,000 live births.1 It is the 10th most common congenital heart defect and the second most common cyanotic lesion after tetralogy of Fallot.1 Male individuals are affected more commonly than female individuals in a 2:1 ratio.2 The etiology of TGA remains unknown, but it likely has a genetic origin.3 There has been an association with maternal diabetes mellitus.4 During development of the normal heart, the conotruncus (representing the primitive outflow tracts and semilunar valves) rotates such that the pulmonary artery is aligned with the right ventricle and the aorta is aligned with the left ventricle.5 In TGA, it is likely that the normal rotation of the conotruncus is inhibited, preventing the normal alignment of the great vessels and resulting in ventriculoarterial discordance.

TGA may occur as an isolated defect or in association with other cardiac anomalies. In the majority of patients with TGA, the aorta is rightward and anterior to the pulmonary artery, but there can be wide variability in the spatial relationships between the great arteries, including the rare relationship of a posterior and/or leftward aorta.6 Approximately 60% of patients with TGA have an intact ventricular septum, and the other 40% have ventricular septal defects (VSD).7 At birth, a patent foramen ovale and patent ductus arteriosus (PDA) are usual and allow a variable amount of mixture of oxygenated and deoxygenated blood. If the foramen ovale is closed or very small, cyanosis may be severe enough to require urgent intervention with a BAS, a catheter-directed enlargement of the foramen ovale pioneered by Dr. William Rashkind.8 VSDs can be simple (perimembranous type or muscular type) or more complex (malalignment type with associated outflow tract obstruction, doubly committed subarterial type, or inlet type). The type of VSD often dictates the surgical option required to address the anomaly.

Before the 1950’s, TGA was a fatal disease resulting in death in 89% of patients by 1 year of age.9 Early death resulted from severe cyanosis. If there was an adequate atrial communication and/or VSD, mortality was delayed to later in childhood as a result of pulmonary vascular disease. In the early 1950’s, surgical correction of TGA was attempted with an early form of the ASO. The outcomes were quite poor, primarily because of an inability to successfully transfer the CAs from the aorta to the “neo”-aorta. In that same decade, different strategies to palliate TGA were developed, eventually leading to the AtrSO. Variations of this procedure were pioneered and reported by Drs. Mustard and Senning (Video 1; available at www.onlinejase.com).10,11 The AtrSO, in which the superior vena cava (SVC) and inferior vena cava (IVC) are baffled to an}
the mitral valve and the pulmonary veins are baffled to the tricuspid valve, was the first operative procedure for TGA that resulted in acceptable operative and midterm survival.11-13 Although the AtrSO achieved widespread success from the mid-1960's through the early-1980's, the search continued for a more "physiologic" procedure because of the known long-term complications such as right ventricular (RV) dysfunction and significant tricuspid regurgitation (in a ventricle potentially unsuited for a lifetime as the systemic pumping chamber), arrhythmias, and a small but important prevalence of obstruction of the systemic and/or pulmonary venous pathways.14-17

In 1975, Jatene et al.18 performed the first successful ASO. Although not a true anatomical "correction," this landmark operation effectively achieved circulation in series with the morphologic left ventricle acting as the systemic pumping chamber. During the ASO, the great arteries are transected and "switched" to the other semilunar valve, and the CAs are translocated to the "neoaorta" (Video 2; available at www.onlinejase.com). The LeCompte maneuver19 is also performed during the operation to avoid distortion of the branch pulmonary arteries in the process of switching the great vessels. The LeCompte maneuver relocates the aorta posterior to the pulmonary artery such that both branch pulmonary arteries drape anteriorly to the aorta (Figure 2, Video 2; available at www.onlinejase.com). Although the ASO is a more "physiologic" procedure compared to the AtrSO, it is by no means a "corrective repair," as it requires multiple suture lines as well as mobilization and reimplantation of the CAs.

In the setting of posterior malalignment VSD and left ventricular (LV) (subpulmonary) outflow tract obstruction alternative surgical strategies are required for repair because a successful ASO requires a relatively normal pulmonary valve. Most patients with posterior

<table>
<thead>
<tr>
<th>Table 1</th>
<th>Structural and functional abnormalities encountered in TGA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preoperative TGA</td>
<td>Atrial communication (for adequate mixing)</td>
</tr>
<tr>
<td></td>
<td>VSD (in 40%)</td>
</tr>
<tr>
<td></td>
<td>LV outflow tract obstruction</td>
</tr>
<tr>
<td></td>
<td>Pulmonary valve (stenosis)</td>
</tr>
<tr>
<td></td>
<td>RV outflow tract obstruction</td>
</tr>
<tr>
<td></td>
<td>Aortic valve (stenosis)</td>
</tr>
<tr>
<td></td>
<td>Aortic arch (coarctation, interruption)</td>
</tr>
<tr>
<td></td>
<td>Ductus arteriosus</td>
</tr>
<tr>
<td></td>
<td>CA variations</td>
</tr>
<tr>
<td>After ASO</td>
<td>Early</td>
</tr>
<tr>
<td></td>
<td>PH</td>
</tr>
<tr>
<td></td>
<td>Ventricular dysfunction</td>
</tr>
<tr>
<td></td>
<td>CA kinking or stenosis</td>
</tr>
<tr>
<td></td>
<td>Residual VSD (if one present)</td>
</tr>
<tr>
<td></td>
<td>Supravalvar pulmonary stenosis</td>
</tr>
<tr>
<td></td>
<td>Supravalvar aortic stenosis</td>
</tr>
<tr>
<td></td>
<td>Neoaortic or neopulmonary valve regurgitation</td>
</tr>
<tr>
<td></td>
<td>Branch pulmonary artery stenosis</td>
</tr>
<tr>
<td></td>
<td>Aortopulmonary collateral vessels</td>
</tr>
<tr>
<td>Late</td>
<td>PH</td>
</tr>
<tr>
<td></td>
<td>Ventricular dilation and dysfunction</td>
</tr>
<tr>
<td></td>
<td>CA stenosis/occlusion</td>
</tr>
<tr>
<td></td>
<td>Supravalvar pulmonary stenosis</td>
</tr>
<tr>
<td></td>
<td>Neoaortic root dilation</td>
</tr>
<tr>
<td></td>
<td>Neoaortic valve regurgitation</td>
</tr>
<tr>
<td></td>
<td>Branch pulmonary artery stenosis</td>
</tr>
<tr>
<td></td>
<td>Subaortic obstruction</td>
</tr>
<tr>
<td>After AtrSO</td>
<td>Systemic venous baffle obstruction</td>
</tr>
<tr>
<td></td>
<td>Pulmonary venous baffle obstruction</td>
</tr>
<tr>
<td></td>
<td>Atrial baffle leak</td>
</tr>
<tr>
<td></td>
<td>Tricuspid regurgitation</td>
</tr>
<tr>
<td></td>
<td>RV dysfunction</td>
</tr>
<tr>
<td></td>
<td>Sinus node dysfunction/atrial arrhythmias</td>
</tr>
<tr>
<td>After Rastelli/Nikaidoh operation</td>
<td>Residual VSD</td>
</tr>
<tr>
<td></td>
<td>Ventricular dilation and dysfunction</td>
</tr>
<tr>
<td></td>
<td>Subaortic obstruction</td>
</tr>
<tr>
<td></td>
<td>Conduit obstruction</td>
</tr>
<tr>
<td></td>
<td>Conduit regurgitation</td>
</tr>
<tr>
<td></td>
<td>CA stenosis/kinking (if reimplanted)</td>
</tr>
</tbody>
</table>
malalignment VSDs have hypoplastic pulmonary valves with thickened leaflets and subpulmonary narrowing. Thus, the typical operation performed in this setting is the Rastelli procedure (Video 3; available at www.onlinejase.com). The pathway from the baffle becomes the neo–left ventricle, with the VSD acting as the subaortic region. Alternatively, the Nikaidoh operation may be performed. This is a more complex procedure also known as aortic translocation. It is performed to avoid late obstruction of the baffled LV outflow tract that can occur after the Rastelli operation. The Nikaidoh procedure involves division of the small posterior pulmonary annulus and mobilization of the aortic root, which is moved to the open pulmonary annulus, thus bringing it closer to the left ventricle. The CAs are often translocated to avoid kinking, and the VSD is closed with a patch. A pathway from the right ventricle to the pulmonary arteries is then created.

For TGA in the setting of anterior malalignment VSD with RV (sub-aortic) outflow tract obstruction, an ASO is performed along with a combination of augmentation of the RV outflow tract (similar to tetralogy of Fallot) and VSD closure. The aortic arch is also repaired if obstructed or interrupted. Because most of the consequences of this complex repair fall under other categories, it will not be further discussed as an individual lesion.

Diagnostic information in patients with TGA can be obtained using a variety of diagnostic tools in the preoperative and postoperative period. The choice of when to perform echocardiography, CMR, cardiovascular CT, nuclear scintigraphy, x-ray angiography, or a combination of these diagnostic procedures is dictated by the clinical question and institution-related issues. The aim of this document is to describe the role of each diagnostic modality in the care of patients with TGA before and after surgical repair and to provide guidelines for a multimodality approach that takes into account these concerns. For each imaging modality, a general overview is provided along with a discussion of its strengths and limitations. Guidelines are presented for the use of the each modality in patients with TGA.

Table 2 Comparison of imaging modalities

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Echocardiography</th>
<th>CMR</th>
<th>CT angiography</th>
<th>Nuclear scintigraphy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>++++</td>
<td>++</td>
<td>++</td>
<td>+</td>
</tr>
<tr>
<td>Portability</td>
<td>++++</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Radiation exposure</td>
<td>–</td>
<td>–</td>
<td>+++</td>
<td>++++</td>
</tr>
<tr>
<td>Safety with pacers</td>
<td>++++</td>
<td>+</td>
<td>+++</td>
<td>++++</td>
</tr>
<tr>
<td>CA anatomy</td>
<td>++</td>
<td>+++</td>
<td>+++</td>
<td>–</td>
</tr>
<tr>
<td>Aortopulmonary collateral vessels</td>
<td>+</td>
<td>+++</td>
<td>++</td>
<td>–</td>
</tr>
<tr>
<td>Supravalvar aortic stenosis (ASO)</td>
<td>+++</td>
<td>+++</td>
<td>+++</td>
<td>–</td>
</tr>
<tr>
<td>Supravalvar pulmonary stenosis (ASO)</td>
<td>+++</td>
<td>+++</td>
<td>+++</td>
<td>–</td>
</tr>
<tr>
<td>Branch PA stenosis (ASO)</td>
<td>++</td>
<td>+++</td>
<td>+++</td>
<td>–</td>
</tr>
<tr>
<td>Neoaortic root dilation (ASO)</td>
<td>+++</td>
<td>+++</td>
<td>+++</td>
<td>–</td>
</tr>
<tr>
<td>Neoaortic regurgitation (severity) (ASO)</td>
<td>++</td>
<td>+++</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>CA stenosis (ASO)</td>
<td>+</td>
<td>+++</td>
<td>+++</td>
<td>++</td>
</tr>
<tr>
<td>Myocardial ischemia (ASO)</td>
<td>+</td>
<td>+++</td>
<td>–</td>
<td>++++</td>
</tr>
<tr>
<td>Systemic venous baffle obstruction (AtrSO)</td>
<td>++</td>
<td>+++</td>
<td>+++</td>
<td>–</td>
</tr>
<tr>
<td>Pulmonary venous baffle obstruction (AtrSO)</td>
<td>++</td>
<td>+++</td>
<td>+++</td>
<td>–</td>
</tr>
<tr>
<td>Baffle leak (AtrSO)</td>
<td>++</td>
<td>++</td>
<td>–</td>
<td>+</td>
</tr>
<tr>
<td>RV dysfunction (AtrSO)</td>
<td>++</td>
<td>+++</td>
<td>+++</td>
<td>–</td>
</tr>
<tr>
<td>Residual VSD (Rastelli/Nikaidoh)</td>
<td>+++</td>
<td>+++</td>
<td>+</td>
<td>–</td>
</tr>
<tr>
<td>Subaortic obstruction (Rastelli/Nikaidoh)</td>
<td>+++</td>
<td>+++</td>
<td>+++</td>
<td>–</td>
</tr>
<tr>
<td>Conduit obstruction (Rastelli/Nikaidoh)</td>
<td>+++</td>
<td>+++</td>
<td>+++</td>
<td>–</td>
</tr>
<tr>
<td>Conduit regurgitation (Rastelli/Nikaidoh)</td>
<td>++</td>
<td>+++</td>
<td>–</td>
<td>–</td>
</tr>
</tbody>
</table>

Figure 3 Two-dimensional subxiphoid left anterior oblique view demonstrates the relationship of the great arteries in TGA. The aorta (Ao) is seen arising from the right ventricle and the pulmonary artery is seen arising from the left ventricle. The aorta is seen arching over the pulmonary artery. LV, Left ventricle; PA, pulmonary artery; RV, right ventricle.
GENERAL CONSIDERATIONS

In patients with TGA, the diagnostic evaluation of the preoperative and postoperative patient has different goals. Various structural and functional abnormalities must be considered (Table 1). The preoperative patient is cyanotic, and initial imaging is usually performed to assess for adequate mixing of the pulmonary and systemic circulations. This is primarily achieved with TTE. Occasionally, a complete echocardiographic study must be delayed until a BAS is performed. For postoperative imaging, understanding each patient’s prior medical and surgical history is essential because there are several management strategies for patients with TGA. Evaluation of the previous operative reports is critical to that end. If medical records are not available, the patient’s age can offer a clue to the type of surgical procedure performed. The AtrSO was performed from the 1950’s through the early 1980’s and is now rarely performed in patients who have late clinical presentation (at weeks to months of age). The majority of patients born after the early 1980’s have primarily had the ASO or a variation of this procedure. Those patients with posterior malalignment VSD have generally had Rastelli or Nikaidoh operations. Patients with TGA are now surviving into adulthood. Imaging is an important component of the long-term follow-up of these patients, and this guideline will provide cardiology practitioners with a strategy to determine the best modalities to use in various clinical situations.

GOALS OF IMAGING

In a patient with TGA, each of the abnormalities listed in Table 1 can be evaluated using a combination of imaging modalities. The advantages of each modality are listed in Table 2.

ECHOCARDIOGRAPHY

Overview of Modality

Two-dimensional and Doppler echocardiography provide the ability to evaluate the majority of anatomic and hemodynamic abnormalities in patients with TGA. TTE identifies anatomic detail, including levels of shunting, the relationship of the great vessels to each other, qualitative assessment of ventricular function, and the presence and significance of additional congenital heart abnormalities. In most patients, the CA anatomy can also be identified using a combination of 2D and color flow Doppler. Doppler echocardiography is particularly important in this population for noninvasive hemodynamic assessment of the atrial communication and the PDA, severity of outflow tract obstruction, AV and semilunar valve function, and assessment of the VSD (if present). TEE is typically used to assess the adequacy of intraoperative repair; it can also be used to guide interventional procedures such as closure of baffle leaks or stenting of venous baffle limbs after the AtrSO. TEE is also useful to evaluate valve anatomy when TTE does not provide adequate images. More recently, myocardial deformation imaging is emerging as a tool to evaluate regional wall motion abnormalities in this population, particularly in those who have undergone the ASO and may have CA stenosis or ischemia.

Strengths and Limitations

Echocardiography has been used as the primary diagnostic imaging modality in patients with TGA since the 1980’s. It is widely available, relatively inexpensive, portable, and, importantly, quite safe. Ultrasound does not generally cause harm to human tissue. Moreover, practitioners are well trained to use this modality.

There are important limitations of echocardiography in patients with TGA. In the preoperative evaluation, the resolution is such that accurate diagnosis of CA anatomy is sometimes not possible. In older patients, the acoustic windows often become challenging; in some cases, other modalities are required to answer anatomic and physiologic questions. Particular data such as end-diastolic pressure and pulmonary vascular resistance cannot be accurately measured by echocardiography. Moreover, accurate quantitative information on right heart size and function, quantitative assessment of valvar regurgitation, accurate identification of CA ischemia, and optimal visualization of extracardiac structures are better delineated using other modalities.

Preoperative Assessment of TGA with Echocardiography

The preoperative transthoracic echocardiographic evaluation of a patient with TGA must obtain every piece of information necessary to ensure that the surgical strategy chosen is appropriate. Hence,
echocardiography must be performed carefully and systematically. The majority of infants with TGA do not require another modality for diagnostic purposes. The segmental approach to anatomic diagnosis provides the best framework in which to obtain a comprehensive assessment of the cardiac malformation and its associated lesions. A strict protocol is necessary when evaluating neonates with congenital heart disease, and most centers follow the protocol for a pediatric echocardiogram established by the American Society of Echocardiography (ASE) Pediatric and Congenital Heart Disease Council in 2006.23

Anatomic Assessment of TGA. The diagnosis of TGA can be made with the first sweep in the subxiphoid frontal (long-axis) view. This view shows that the first visible great artery originates from the left ventricle and bifurcates into a right and left branch, identifying it as the pulmonary artery. Sweeping further anteriorly reveals the origin of the aorta from the RV (Figure 3, Video 4; available at www.onlinejase.com). The great arteries typically arise in parallel in TGA in contrast to the normal heart where the great arteries spiral around each other. If the protocol begins with a parasternal long-axis sweep, the initial image shows that the proximal great arteries take a parallel course as they originate from the two ventricles (Figures 4A and 4B, Video 5; available at www.onlinejase.com).

Interrogation of the atrial communication is one of the most important components of the initial assessment of a patient with TGA. After birth, there is a normal increase in pulmonary blood flow, which results in increased pulmonary venous return to the left atrium. An atrial communication results in effective left-to-right shunting at the atrial level, providing oxygenated blood to the systemic circulation.25 In those patients with a small atrial communication, the increase in left atrial pressure may partially or completely close the flap valve of the foramen ovale, hindering the passage of oxygenated blood into the right atrium and resulting in marked cyanosis. Assessment of the adequacy of the atrial communication is achieved by clinical knowledge of the systemic oxygen saturation as well as echocardiographic measurement of the size of the atrial communication and the mean pressure gradient across the interatrial septum (Figure 5). If the defect is deemed too small by these criteria, BAS will be necessary to enlarge the atrial communication (Video 6; available at www.onlinejase.com). TTE or TEE can be used to guide catheter-directed

Figure 5 Subxiphoid left anterior oblique view in color-compare mode highlights the atrial communication in an infant with TGA with intact ventricular septum. In this case, the atrial communication was considered adequate for mixing and a BAS was not required. LA, Left atrium; RA, right atrium.

Figure 6 (A) Subxiphoid frontal (long-axis) view demonstrates an adequate atrial communication created after BAS. The portion of the septum primum that is torn with the balloon is seen flapping into the left atrium (LA). (B) The same view with color flow demonstrates significant atrial level shunting after BAS. RA, Right atrium.
BAS either at the patient’s bedside or in the cardiac catheterization laboratory. The resulting atrial communication after BAS can be readily recognized (Figures 6A and 6B, Video 7; available at www.onlinejase.com). If the atrial communication is deemed adequate by echocardiography but the patient is markedly cyanotic, other etiologies such as high pulmonary vascular resistance or pulmonary vein stenosis must be considered.

Once the diagnosis of TGA is confirmed with the first transthoracic echocardiographic images and the atrial communication is deemed adequate (or the patient has undergone BAS), the segmental approach can be used to evaluate for all possible associated lesions. In the clinically stable patient, evaluation of the systemic and pulmonary veins represents the first part of this endeavor. A persistent left SVC occurs in approximately 4% of patients with TGA.26 Its presence can have significant impact during surgical intervention, particularly at the time of cardiopulmonary bypass cannulation. Partial or total anomalous pulmonary venous return can also occur and must be excluded in the evaluation because this anomaly would likely be repaired at the same time as the primary surgical repair for TGA.27

On further imaging of the atria, the atrial appendages should be identified. Leftward juxtaposition of the atrial appendages (should be parallel when the atrial septum is in the normal position). The right atrial appendage is visualized as it crosses over toward the left atrium (LA). The left atrial appendage (LAA) in its normal position sits just inferior to the right atrial appendage. RA, Right atrium.

Table 3 Nomenclature of the types of VSDs seen in TGA

<table>
<thead>
<tr>
<th>Anderson term</th>
<th>Van Praagh/Weinberg term</th>
<th>STS term</th>
<th>ISNPCHD term</th>
</tr>
</thead>
<tbody>
<tr>
<td>Perimembranous</td>
<td>Membranous/conoventricular</td>
<td>Type 2</td>
<td>Central</td>
</tr>
<tr>
<td>Perimembranous with malalignment</td>
<td>Conoventricular with malalignment, malalignment</td>
<td>Outlet with malalignment</td>
<td></td>
</tr>
<tr>
<td>Doubly committed subarterial</td>
<td>Conal septal, conal septal hypoplasia</td>
<td>Type 1 Outlet</td>
<td></td>
</tr>
<tr>
<td>Perimembranous inlet</td>
<td>AV canal type</td>
<td>Type 3</td>
<td>Inlet</td>
</tr>
<tr>
<td>Muscular</td>
<td>Muscular</td>
<td>Type 4</td>
<td>Trabecular</td>
</tr>
</tbody>
</table>

ISNPCHD, International Society of Nomenclature of Paediatric and Congenital Heart Disease; STS, Society of Thoracic Surgeons.

excluded in the evaluation because this anomaly would likely be repaired at the same time as the primary surgical repair for TGA.27

On further imaging of the atria, the atrial appendages should be identified. Leftward juxtaposition of the atrial appendages occurs in approximately 2% of patients with TGA.26 Conversely, >50% of patients with juxtaposition of the atrial appendages have TGA.26,28 Because of its unusual appearance, leftward juxtaposition sometimes mimics a moderate or large atrial communication. In leftward juxtaposition of the atrial appendages, a subxiphoid frontal (long-axis) sweep shows the atrial septum in a perpendicular orientation to the diaphragm (Figure 7; available at www.onlinejase.com) (in the normal heart, the atrial septum is parallel to the diaphragm in this view). As the probe sweeps anteriorly, the ostium of the right atrial appendage will become apparent, and the appendage itself is seen passing behind

Figure 7 Subxiphoid frontal (long-axis) view demonstrates leftward juxtaposition of the atrial appendages. The atrial septum is seen perpendicular to the diaphragm (it should be parallel when the atrial septum is in the normal position). The right atrial appendage is visualized as it crosses over toward the left atrium (LA). The left atrial appendage (LAA) (in its normal position) sits just inferior to the right atrial appendage. RA, Right atrium.

Figure 8 Subxiphoid left anterior oblique view of a straddling tricuspid valve through an inlet (AV canal) type VSD in a patient with TGA. The great arteries are not seen in this view. LV, Left ventricle; RA, right atrium; RV, right ventricle; TV, tricuspid valve.

Figure 9 Subxiphoid left anterior oblique view demonstrates a VSD (doubly committed subarterial, conal septal) that sits just under both great arteries. Note the semilunar valves are at the same level and the tissue in between the two outflow tracts is quite small and fibrous rather than muscular. Ao, Aorta; LV, left ventricle; PA, pulmonary artery; RV, right ventricle.
the pulmonary artery. This structure can also be seen posterior the pulmonary artery in apical four-chamber and parasternal long-axis views.

Abnormalities of the AV valves may also occur in association with TGA, and these include a common AV valve in a complete AV canal defect, AV valve hypoplasia and/or stenosis, cleft mitral valve, and straddling and/or overriding AV valves. Abnormalities of the tricuspid valve, including abnormal attachments to the conal septum or to the crest of the ventricular muscular septum, occur frequently in patients with TGA in association with a VSD. All views can be used to identify these AV valve abnormalities. Subxiphoid and apical four-chamber views are particularly useful to determine if an AV valve is straddling. In addition to anatomic abnormalities, AV valves may be regurgitant, possibly related to ventricular dysfunction or ischemia from severe cyanosis.

A common associated lesion in patients with TGA is a VSD, occurring in approximately 40% of these patients. As in normally related great arteries, VSDs in TGA can be divided into five different anatomic categories (Table 3). VSDs may be variable in size and may be multiple. AVSD in association with TGA significantly increases the complexity of the disease and may dictate the surgical strategy. The echocardiographic study must evaluate the entire ventricular septum, delineate all the margins of the VSD(s), and exclude other associations with TGA and VSD such as outflow tract obstruction, aortic coarctation, straddling AV valves, and prolapsing semilunar valves. Accurate assessment of the size of the defect is important to determine whether it needs to be closed during the primary surgical intervention. Small VSDs may be hemodynamically insignificant or may close spontaneously. With inlet (AV canal type) VSDs, imaging must include assessment for a straddling tricuspid valve (Figure 8). Doubly committed subarterial (conal septal) defects have fibrous continuity between the aortic and pulmonary valves (Figure 9). Thus, closure of these defects may result in distortion of semilunar valve leaflets and valve regurgitation. Conoventricular (malalignment) defects are associated with outflow tract obstruction. Posterior malalignment of the conal septum results in LV (subpulmonary) outflow tract obstruction (Figure 10). With anterior malalignment of the conal septum, the RV (subaortic) outflow tract is narrow, and distal arch obstruction is common (Figure 11). Muscular defects, if large, may be challenging to close because of their location in the ventricular septum. Subxiphoid, apical, and parasternal views provide complimentary imaging that helps define the location and size of VSDs. Identifying multiple VSDs can be challenging when the pressure is equal between the ventricles.
hypoplasia may also occur in the setting of TGA with VSD, particularly when AV valve straddling or outflow tract obstruction is seen.33

Conus is defined as the ring of muscle that sits entirely under a great vessel. Conus can be present under one, both, or neither great artery. In the normal heart, subpulmonary conus is present (muscular separation between the tricuspid and pulmonary valves), and there is no subaortic conus (mitral-to-aortic fibrous continuity). The most common conal morphology in patients with TGA is persistence of the subaortic conus with regression of the subpulmonary conus (Figure 12); this conal anatomy is seen in 88% to 96% of patients with TGA.34,35 Bilateral conus is seen in 3% to 7%; bilaterally absent conus or only subpulmonary conus with absent subaortic conus are both rare in TGA.

LV outflow tract obstruction occurs in almost 10% of patients with TGA and VSD and can have significant implications in terms of the surgical approach.32 The mechanisms for obstruction include ventricular septal hypertrophy, aneurysmal membranous septum billowing into the subpulmonary region, a subvalvar fibromuscular ridge, abnormal attachments of the mitral valve apparatus to the ventricular septum, posterior malalignment of the conal septum, and pulmonary valvar stenosis.36 Occasionally, dynamic subpulmonary stenosis occurs in TGA and intact ventricular septum with bowing of the ventricular septum into the LV outflow tract secondary to RV hypertension, a condition which usually resolves after the ASO. In contrast, anterior malalignment of the conal septum into the RV outflow tract occurs less frequently and is associated with multiple levels of aortic outflow obstruction.
tract obstruction, including subvalvar and valvar aortic stenosis as well as aortic coarctation or aortic arch interruption. Subxiphoid, apical, and parasternal views all provide comprehensive images of the RV and LV outflow tracts to aid in determining the mechanism for obstruction, and suprasternal views are especially useful in assessing aortic arch abnormalities.

In TGA, the CAs are never in the normal position because the aorta is transposed and is usually anterior to the pulmonary artery. With the introduction of the ASO (which includes CA translocation to the neo-aorta), assessment of CA anatomy has become a fundamental component of the echocardiographic evaluation of neonates with TGA. Recognition of CA anatomy is important because some variations of CA anatomy may be difficult to “switch” or are associated with later CA events. Despite the anatomic variations, it is currently accepted that all CA patterns can be surgically translocated. The presence of an intramural CA, where a segment of the proximal CA runs within the wall of the aorta, appears to carry the highest risk for events and has been consistently associated with poor early outcome in multiple surgical series. The intramural segment makes surgical CA transfer more complex and increases the risk for CA stenosis. The presence of a single CA ostium has also been described as a higher risk for early mortality.

The CA ostia are almost always located in one or both of the two aortic sinuses facing the pulmonary artery. The most common CA variations seen in TGA are displayed in Figure 13. The “usual” CA pattern in TGA involves the origin of the left main CA (which gives rise to the anterior descending and circumflex CAs) from the leftward and/or anterior facing aortic sinus and origin of the right CA from the rightward and/or posterior facing aortic sinus; this arrangement occurs in 65% of all patients (Figures 14A and 14B). Common CA variants include circumflex CA from the right CA (13%), single right CA with the left main CA coursing behind the pulmonary artery (7%),

Figure 14 High parasternal view in color-compare mode in a patient with TGA demonstrates (A) the usual pattern of the left CA (LCA) arising from the left-facing sinus to the pulmonary artery and (B) the right CA (RCA) arising from the right-facing sinus to the pulmonary artery. **Ao, Aorta; PA, pulmonary artery.**
and origin of the right CA and anterior descending CA from the leftward and/or anterior facing sinus and origin of the circumflex CA from the rightward and/or posterior facing sinus (inverted right CA and circumflex; 6%). More rare variants include a single right CA with the left main CA taking an intramural course between the great arteries (3%), inverted CAs with origin of the left main CA from the rightward and/or posterior facing sinus and origin of the right CA from the leftward and/or anterior facing sinus (3%), single left CA with the right CA coursing in front of the aorta (2%), and single left CA with the right CA taking an intramural course between the great arteries (1%). Parasternal short-axis views provide the best evaluation of the CA anatomy, particularly in demonstrating the origins of the CA ostia and assessing for an intramural CA, which courses between the two great arteries (Figure 15). This view is also useful in the evaluation of commissural alignment between the aortic and pulmonary valves, because this information can become important when planning the translocation of the CA “buttons” to the pulmonary (neoaortic) root (Figure 16). The parasternal long-axis view is occasionally better at displaying the bifurcation of the left main CA into the anterior descending and circumflex CAs. In all of the variants other than the “usual” arrangement and those with an intramural CA, one of the CA branches will travel behind the pulmonary artery and/or in front of the aorta (Figures 13 and 17, Video 9; available at www.onlinejase.com). These variants are frequently first recognized in subxiphoid and apical sweeps.

Abnormalities of the branch pulmonary arteries or the aortic arch can occur in the setting of LV or RV outflow tract obstruction, respectively. These structures are best evaluated in high parasternal, right parasternal border, and suprasternal views. Other than the atrial communication, the PDA is an important contributor to the mixing of blood between the parallel circulations of the systemic and pulmonary vascular beds. The PDA is best evaluated in the high left parasternal view23 or the suprasternal sagittal (long-axis) view because of the parallel relationship of the aorta and pulmonary artery (Figure 18). Finally, aortopulmonary collateral vessels can be seen in TGA. Although echocardiography is not the best modality for their detection, collateral vessels can sometimes be seen arising from the descending aorta in multiple views, including subxiphoid and suprasternal.

Patient Preparation. Generally, preoperative imaging of infants with TGA occurs in the first few hours to days of life. Most infants with this diagnosis are already hospitalized from birth and are housed in a neonatal or cardiac intensive care unit. Occasionally, the diagnosis will not be recognized and an infant may be in a well-baby nursery or even be evaluated as an outpatient. Because imaging is performed in early infancy, sedation is generally not required, as the neonate can be calmed with feeding or with other noninvasive interventions.

Scanning Protocol. ASE guidelines exist for the routine pediatric transthoracic echocardiographic examination.24 Preoperative

Figure 15 High parasternal view using color Doppler demonstrates an intramural left CA arising from the right-facing sinus, which takes a course between the aorta (Ao) and the pulmonary artery (PA) (white arrows). Transferring this CA to the neoaorta could result in distortion of the vessel.

Figure 16 High parasternal view of the aortic and pulmonary valves. Usually the commissures align between the vessels but in this case they are offset. Ao, Aorta; PA, pulmonary artery.

Figure 17 Apical four-chamber view demonstrates a CA coursing just posterior to the pulmonary artery (white arrows) suggesting that the circumflex artery arises from the right-facing coronary sinus. LA, Left atrium; LV, left ventricle; RA, right atrium; RV, right ventricle.
echocardiographic evaluation is outlined in detail in Table 4. Pertinent findings are highlighted below.

In the subxiphoid frontal (long-axis) view, the atrial septum is well delineated to determine if an atrial communication is present and adequate for mixing. When sweeping in a posterior-to-anterior direction, the relationship of the aorta and the pulmonary artery is seen (in TGA, typically the aorta is anterior and to the right of the pulmonary artery). Occasionally, a CA branch is seen coursing behind the pulmonary artery during this sweep, suggesting that the CA anatomy is not the “usual” arrangement (Video 7; available at www.onlinejase.com).

The subxiphoid sagittal (short-axis) sweep highlights the systemic and pulmonary venous connections, the atrial septum, and the AV valve morphology. The ventricular septum is well
delineated in this view: a perimembranous VSD will be seen behind the septal leaflet of the tricuspid valve, a muscular VSD will be seen within a completely muscular rim anywhere in the muscular septum, a doubly committed subarterial (conal septal) VSD will be seen just below both semilunar valves with absence or deficiency of the conal septum, and an inlet (AV canal type) VSD will be seen in the area of the AV valves. The RV and LV outflow tracts are also well evaluated in this view, particularly in terms of posterior or anterior deviation of the conal septum as well as dynamic subpulmonary obstruction (when the ventricular septum is intact). The relationship of the aorta and the pulmonary artery (anterior/posterior or side by side) can be confirmed in this sweep after initially using the frontal (long-axis) view.

The apical four-chamber view provides information regarding the relative sizes of the AV valves, the presence of AV valve stenosis and/or regurgitation, straddling or override of the AV valves, and the presence of a mid-muscular VSD or an apical muscular VSD. Anterior angulation provides information regarding the LV outflow tracts and semilunar valves. This is another view where a CA may be seen coursing posterior to the pulmonary artery (Figure 17). The sweep in this view is excellent at displaying the location and size of VSDs if present, the relative size and function of the ventricles, and the relative position of the ventricular septum. CA anatomy is best evaluated in this view, and every effort should be made to follow the CA branches as far distally from the aorta as possible and to exclude an intramural CA.

The suprasternal short-axis sweep helps determine the aortic arch sidedness as well as the branching pattern. In addition, absence of an innominate vein in this sweep should increase the suspicion for a persistent left SVC. A suprasternal long-axis sweep provides information regarding the PDA and helps exclude aortic coarctation or aortic arch interruption (Figure 18).

Reporting Elements and Measurements

- Systemic and pulmonary venous connections
- Size of foramen ovale/atrial septal defect
- Juxtaposition of the atrial appendages, if present
- Tricuspid and mitral valve anatomy, size, and function
- RV and LV size and function
- VSD type, size, number, and direction of flow, if present
- Type and severity of obstruction of RV and LV outflow tracts, if present
- Size, morphology and function of the aortic and pulmonary valves
- Type and severity of aortic arch obstruction, if present
- Patency of ductus arteriosus, size, direction of flow, and restriction of flow, if present
- CA anatomy
- Size of branch pulmonary arteries and severity of obstruction, if present
- Arch sidedness and branching and assessment for obstruction/interruption

Recommendations. TTE is the primary diagnostic imaging modality in the preoperative assessment of TGA. A complete study will usually identify all anatomic structures and the important features of the defect. For TGA, TTE can also be used to guide BAS at the bedside in the intensive care unit. Rarely, additional modalities are required to confirm the diagnosis of TGA before surgery. In particular, if there is concern about the CA anatomy, then cardiac CT or angiography can be used.

Postoperative Assessment of TGA with Echocardiography

Early and late residual lesions may occur after surgery for TGA, and the majority of these complications can be diagnosed by noninvasive methods.

Early Sequelae after ASO. Mortality risk for the ASO has decreased significantly since the procedure was initially described in 1975. Current reviews suggest that the surgical mortality is now <5%, but there are anatomic subtypes that have higher perioperative mortality. These include certain CA patterns, multiple VSDs, aortic arch anomalies, and inlet (AV canal) type VSD and straddling AV valve. Early sequelae that complicate postoperative recovery as well as clinical status during later infancy and early childhood include CA stenosis, pulmonary hypertension (PH), supravalvar and branch pulmonary artery stenosis, LV outflow tract obstruction, supravalvar aortic stenosis, and neoaoaric valve regurgitation. Each of these complications will be discussed in more detail.

CA Stenosis. CA stenosis secondary to occlusion or kinking as part of the CA translocation procedure is the most common cause of early mortality after ASO. During the ASO, difficulty separating from cardiopulmonary bypass heralds a problem with CA reimplantation. TEE after the procedure may be helpful in assessing for regional wall motion abnormalities and in some cases for evaluating CA flow. Lowering the scale and narrowing the color sector can enhance imaging of CA blood flow. Some institutions have had success with intraoperative CA imaging and color Doppler interrogation to help determine adequacy of the CA transfer. A left main CA velocity-time integral > 0.14 and a left main CA peak systolic velocity > 0.6 cm/sec have been associated with need for surgical revision of the CA.

In the immediate postoperative period, CA stenosis or occlusion should be considered in any infant with identified low cardiac output syndrome with echocardiographic evidence of significant LV
dysfunction, especially when regional wall motion abnormalities are seen (Video 10; available at www.onlinejase.com). On postoperative TTE, the neo-CA ostia can frequently be imaged with the implanted CA ostia and proximal course of the CAs generally seen arising from the anterior left and right sinuses of the neoaortic root (Figure 19). Color flow mapping can also be used to assess patency of the CA, providing qualitative documentation of antegrade flow. If postoperative access to the chest wall or scarring limits parasternal imaging, TEE can also be used to assess the CA origins and flow patterns in the early postoperative period. Of note, the presence of global LV dysfunction early after surgery is not uncommon, especially in the older infant with intact ventricular septum. This dysfunction typically improves over the first few days after surgery in patients who do not have CA injury.

PH. Accelerated development of PH in infants with TGA has been well described and is associated with more complicated postoperative recovery and higher mortality. Early ASO appears to significantly diminish but not abolish this risk. Another less well recognized cause of persistent PH in an infant after ASO is the presence of abnormal aortopulmonary collateral circulation. These collateral vessels can also result in a large left-to-right shunt, complicating early recovery. Septal position in the parasternal short-axis view can give a clue to elevated RV pressure (Figure 20A). Spectral Doppler assessment of RV pressures using the tricuspid regurgitant jet or residual VSD jet can provide an accurate estimate of the presence and severity of PH (Figure 20B). Color flow mapping can identify multiple flow signals around the descending thoracic aorta suggestive of abnormal aortopulmonary collateral formation (Figures 20C and 20D).

Supravalvar and Branch Pulmonary Artery Stenosis. Supravalvar pulmonary stenosis is the most common short-term complication after an ASO, with an incidence of 5% to 30%. This can be related to diffuse main pulmonary artery hypoplasia, discrete obstruction secondary to development of suture line narrowing at

![Figure 20](image_url)
the arterial anastomosis, and/or branch pulmonary artery stenosis. The neopulmonary artery often appears mildly narrowed compared with the neoaortic outflow tract (Video 11; available at www.onlinejase.com). Branch pulmonary artery stenosis more commonly involves the left pulmonary artery as it stretches across the ascending aorta after the LeCompte maneuver. This is particularly true when the great arteries are in a more side-by-side position (Video 11; available at www.onlinejase.com). Pulmonary outflow abnormalities frequently occur in series, with multiple levels of obstruction that involve both the supravalvar area and branch pulmonary arteries. Doppler interrogation of the severity at each level can be challenging with multiple levels of obstruction.

The position of the branch pulmonary arteries is unique after the LeCompte procedure with the vessels straddling anterior to the ascending aorta. This is best seen in a high parasternal view (Figure 21). Assessment of the neopulmonary valve and supravalvar area can be imaged from apical, parasternal, and subxiphoid windows (Figure 22). The best Doppler alignment should be used for accurate estimates of pressure gradients through this area. Neopulmonary valve regurgitation is readily identified by color Doppler, but significant regurgitation is rarely a complication without anatomic abnormalities of the neopulmonary (native aortic) valve.

![Figure 21](image1.png) High parasternal view in color-compare mode demonstrates the anterior relationship of the branch pulmonary arteries to the aorta after the LeCompte maneuver. LPA, Left pulmonary artery; RPA, right pulmonary artery.

![Figure 22](image2.png) Parasternal long-axis view demonstrates narrowing of the supravalvar region above the neopulmonary valve after the ASO. LV, Left ventricle; RV, right ventricle.

![Figure 23](image3.png) Subxiphoid left anterior oblique view of supravalvar aortic stenosis in an infant with TGA after the ASO. The LV and neoaortic (Ao) outflow tract is visualized. Discrete linear supravalvar obstruction is seen in the neoaorta (yellow arrows) related to narrowing at the neoaortic suture line.
RV pressure by the tricuspid regurgitation jet helps determine ASO. Higher velocities may require intervention. An estimate of the branch pulmonary arteries are within normal limits after the artery stenosis (Figure 21). Peak Doppler velocities < 2 m/s across increases the risk for residual or recurrent branch pulmonary orientation of the pulmonary arteries after the LeCompte maneuver has been described in these sections early sequelae after ASO. The subxiphoid left anterior oblique view (45° clockwise of frontal view) and the apical five-chamber view. Often, the suture line is visible using these views (Figure 23); color flow mapping provides qualitative assessment of the severity of obstruction, and spectral Doppler allows accurate determination of the pressure gradient across this region. Color flow mapping in these views also determines the severity of neoaortic valve regurgitation.

Late Sequelae after ASO. Transection of the great arteries with translocation and reanastomosis, along with translocation of the CAs, has potential consequences that require long-term transthoracic echocardiographic evaluation. These include RV outflow tract obstruction and branch pulmonary artery stenosis, complications of the neoaortic root and valve, subaortic obstruction, and late complications of the CAs.

Supravalvar Aortic Stenosis and Neoaortic Valve Regurgitation. Similar to the RV outflow tract, the supravalvar aortic region may be obstructed after the ASO, most commonly because of suture line narrowing (Figure 23). If significant, this narrowing can affect neoaortic valve function. Neoaortic valve regurgitation early after ASO is common and generally trivial to mild in severity; more significant regurgitation is usually only seen in patients with a congenitally abnormal neoaortic (native pulmonary) valve or when the ASO is a second-stage repair after a previously placed pulmonary artery band with resultant valvar distortion.56,57

Evaluation of the supravalvar aortic region is best performed using the subxiphoid left anterior oblique view (45° clockwise of frontal view) and the apical five-chamber view. Often, the suture line is visible using these views (Figure 23); color flow mapping provides qualitative assessment of the severity of obstruction, and spectral Doppler allows accurate determination of the pressure gradient across this region. Color flow mapping in these views also determines the severity of neoaortic valve regurgitation.

Late CA Stenosis and Ischemia. Although discussed in detail in the section on early sequelae of ASO, patients with ASO can rarely present with late findings of CA stenosis or occlusion.39,61 Patients may be asymptomatic, and the findings on TTE are usually subtle. Regional wall motion abnormalities or progressive ventricular dilation and dysfunction may be clues to CA stenosis or occlusion. In older patients with suspected CA stenosis, other modalities are required for accurate assessment. Stress echocardiography can be used as a screening tool to evaluate for regional wall motion abnormalities. Deformation imaging is a newer tool to assess regional ventricular performance, but its use in this population has been limited thus far. Important ventricular ectopy late after ASO is unusual and should prompt investigation for CA ischemia.

Patient Preparation. Postoperative imaging of a young child (<3 years of age) who has undergone an ASO will often require sedation to obtain adequate images. The medical record and surgical report should be reviewed before imaging to determine if a VSD was closed and if the LeCompte maneuver was performed. Because most patients who have had the ASO are still young, TEE is rarely required as a diagnostic method unless there are unusual circumstances.

Scanning Protocol. Imaging protocol after ASO is detailed in Table 5. Subxiphoid views demonstrate whether the atrial communication has been closed and can be used to visualize both outflow tracts (Video 11; available at www.onlinejase.com). These views can also determine if there is a residual VSD (if one was present preoperatively). Color flow mapping assessment gives qualitative assessment of outflow tract obstruction and also demonstrates whether there is neopulmonary and/or neoaortic valve regurgitation. In the subxiphoid frontal (long-axis) view, an anterior sweep will often show the branch pulmonary arteries as they drape over the severity of the obstruction. Transcatheter or surgical reintervention may be required.

Neoaortic Root Dilation and Neoaortic Valve Regurgitation. Progressive neoaortic root dilation is a commonly identified late finding after ASO, although significant morbidity is rare.39,62 Risk factors for neoaortic root dilation have been identified, including previous pulmonary artery band and presence of a VSD. In the pediatric population, the diameter of the neoaortic root is measured from the parasternal long-axis view during systole, inner edge to inner edge (Figure 24). Importantly, Z scores of the neoaortic root are used to follow patients over time to determine whether the root is dilating out of proportion to somatic growth.

Neoaortic valve regurgitation has also been observed in this population, though severe regurgitation appears to be rare. Thus far, only 1% to 2% of patients after the ASO have had evidence of hemodynamically important neoaortic valve regurgitation.56 Surgical intervention for neoaortic valve regurgitation is unusual (1.4%), accounting for only 12% of all reoperations after ASO.57 The apical three- and five-chamber views and the parasternal long- and short-axis views best demonstrate neoaortic valve regurgitation (Video 12; available at www.onlinejase.com). Spectral Doppler aortic flow patterns and color flow mapping of the regurgitant vena contracta can provide semiquantitative assessment of the degree and progression of neoaortic valve regurgitation. Holodiastolic reversal of flow in the abdominal aorta also suggests severe regurgitation. Severity of LV dilatation and dysfunction are important factors in the decision to operate on the neoaortic valve for severe regurgitation.

Figure 24 Parasternal long-axis view of a dilated neoaortic root in an adolescent patient after the ASO. Note the lack of the normal ST junction and the relatively normal size of the valve annulus in comparison with the root. The neoaortic root is measured inner edge to inner edge as per typical pediatric method. Ao, Aorta; LA, left atrium.
the aorta. The subxiphoid sagittal (short-axis) view can also be used to assess for retrograde flow in the descending aorta (which suggests severe neoaortic regurgitation) or a dampened signal (which suggests residual coarctation of the aorta).

The apical four-chamber view demonstrates ventricular performance and assesses AV valve regurgitation. An apical three- or five-chamber view can confirm supravalvar aortic stenosis or LV outflow tract obstruction. It can also be used to determine the severity of neoaortic valve regurgitation (Video 12; available at www.onlinejase.com).

The parasternal long-axis view accurately measures neoaortic root size to assess for progressive dilation (Figure 24). It also can be used to help determine the severity of neoaortic valve regurgitation. With anterior angulation, the RV outflow tract can be interrogated for obstruction and neopulmonary valve regurgitation. Imaging in the parasternal short-axis plane can be used to assess for regional wall

Table 5 Standard protocol for postoperative transthoracic echocardiographic evaluation after ASO (early or late after repair)

<table>
<thead>
<tr>
<th>View</th>
<th>Structure</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Subxiphoid</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Frontal (long-axis)</td>
<td>Atrial septum, ventricular septum and outflow tracts</td>
<td>Assessment for residual atrial septal defect and residual VSD, determine if there is residual outflow tract obstruction</td>
</tr>
<tr>
<td>Sagittal (short-axis)</td>
<td>RV outflow tract; in anterior sweep, ventricular septum, descending aorta</td>
<td>Assessment for pulmonary outflow tract obstruction, for residual VSD, for retrograde flow in the descending aorta</td>
</tr>
<tr>
<td>Apical</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Four-chamber</td>
<td>AV valve function, ventricular size and function, assessment for regional wall motion abnormalities</td>
<td>Regional wall motion abnormalities suggest CA stenosis or occlusion</td>
</tr>
<tr>
<td>Five-chamber</td>
<td>LV outflow tract</td>
<td>Assessment for supravalvar aortic stenosis and neoaortic regurgitation</td>
</tr>
<tr>
<td>Parasternal</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Long-axis</td>
<td>Neoaortic outflow, neopulmonary outflow, residual VSD if present</td>
<td>Assessment for neoaortic root dilation and valve regurgitation, neopulmonary stenosis and/or valve regurgitation</td>
</tr>
<tr>
<td>Short-axis</td>
<td>Ventricular function, septal position, residual VSD if present</td>
<td>Assessment for regional wall motion abnormality and PH</td>
</tr>
<tr>
<td>High parasternal plane</td>
<td>Branch pulmonary arteries</td>
<td>Assessment for stenosis</td>
</tr>
<tr>
<td>Suprasternal</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sagittal (long-axis)</td>
<td>Aortic arch</td>
<td>Assessment for residual arch obstruction or residual PDA</td>
</tr>
</tbody>
</table>

Figure 25 TEE in a biplane view (at 80° and 26°) using color Doppler in an adult patient who has had an AtrSO demonstrating acceleration of flow in the pulmonary venous channel (white arrow) (PVC). Note the relationship of the systemic venous channel (SVC) (with a pacing wire seen in the channel) to the pulmonary venous channel, which wraps around it.
motion abnormalities. Residual VSDs can usually be interrogated in this view as well.

The high parasternal plane is used to assess the branch pulmonary arteries. The pulmonary arteries are highlighted as they drape over the ascending aorta (Figure 21). Lack of visualization of a branch pulmonary artery should raise concern about significant stenosis of that vessel. The suprasternal imaging plane is another view that can be used to evaluate the branch pulmonary arteries. It is also used to assess residual or recurrent coarctation of the aorta.

Figure 26 (A) TEE in four-chamber view high in esophagus (at 0°) demonstrates the superior limb of the systemic venous channel with two pacing wires seen within the channel. (B) Transthoracic image in off-axis parasternal view using color-compare demonstrates significant narrowing of the superior limb of the systemic venous channel. The inferior limb is seen as well. (C) Spectral Doppler of the superior limb of the systemic venous channel demonstrates that the flow does not return to baseline and there is a mean gradient of 10 mm Hg. LV, Left ventricle; RV, right ventricle.

Figure 27 (A) TEE in bicaval view (90°) demonstrates a baffle leak in the pulmonary venous channel (a left-to-right shunt). This baffle leak is close to the inferior limb of the systemic venous channel. (B) After a catheter-directed intervention, an occluder device is seen closing the baffle leak (white arrow).
Evaluation after AtrSO. The AtrSO is very rarely used for TGA in the current era, as it has been almost completely replaced by the ASO. There are rare circumstances in which it is still indicated. When TGA presents late (weeks to months of age), LV pressure has fallen to pulmonary artery levels, resulting in an LV that is unprepared to serve as the systemic pumping chamber. Although some institutions perform a pulmonary artery banding procedure to prepare the left ventricle for the ASO, others choose to perform an AtrSO in this patient population. The AtrSO is also occasionally used when the CA anatomy is deemed too high risk for an ASO. Although that the AtrSO is used infrequently today, there remains a large cohort of adult patients who have undergone this procedure who require cardiac surveillance.

The AtrSO entails complex baffling within the atria to redirect blood flow to the opposite AV valve. The Senning procedure, first described in 1958, uses autologous tissue to construct these atrial baffles, whereas the Mustard procedure (initially described several years later), uses prosthetic material to achieve the same goal. These differences are subtle and not easily recognized by noninvasive or invasive imaging. In these procedures, systemic venous return is baffled to the mitral valve. The SVC baffle and IVC baffle act as “limbs” and meet together as the blood flow is directed into the mitral valve (Video 1; available at www.onlinejase.com). The pulmonary veins drain around the systemic venous baffle to the tricuspid valve (Videos 13 and 14; available at www.onlinejase.com). Often a patch is required to enlarge the pulmonary venous channel to prevent pulmonary venous obstruction. The AtrSO “corrects” the parallel circulations to circulations in series.

Potential complications after the AtrSO may occur with either the Senning or Mustard procedure. These include stenosis of the systemic and/or pulmonary venous pathways, atrial baffle leak (a physiologic atrial septal defect), important tricuspid (systemic AV valve) regurgitation, and systemic RV dysfunction. Moreover, many patients require pacemakers because of sinus node dysfunction and atrial arrhythmias. The AtrSO can be performed in patients with a VSD as well but outcome is worse for this population. Because most patients with AtrSO are now well into adulthood, TTE may be inadequate to visualize regions of concern. TEE is used more frequently in this population than in those who have undergone ASO.

Baffle Obstruction and Residual Communications. Pulmonary venous baffle obstruction can be an important early or late complication after the AtrSO, with resultant PH and pulmonary interstitial edema. Pulmonary venous obstruction should be suspected when the mitral regurgitation jet velocity begins to increase and the left ventricle begins to hypertrophy. It can be detected by TTE, with the obstruction generally occurring at the distal egress of the pulmonary venous channel as it empties into the right atrium. Occasionally, TEE is required to delineate the region of concern (Figure 25). The mean pressure gradient across the obstruction can be used to estimate the severity of the obstruction.

Systemic venous baffle obstruction occurs in up to 30% of patients and is more common after the Mustard procedure. The superior limb of the baffle tends to be smaller than the inferior limb because septum secundum can partially block the pathway. Baffle obstruction can also occur in association with transvenous pacing wires placed in the superior limb of the baffle (Figures 26A–26C). The risk for inferior limb obstruction is significantly lower because the IVC is generally a larger vessel.

Baffle leaks are also a potential complication after AtrSO, resulting in a physiologic left-to-right shunt from the pulmonary venous

Figure 28 Apical four-chamber view in a patient who has had a Senning operation demonstrates significant tricuspid regurgitation (TR) (systemic AV valve regurgitation). Note the dilated right ventricle (RV) and the pancaked left ventricle (LV).

Figure 29 Parasternal short-axis view shows the dilated right ventricle (RV) with bowing of the ventricular septum (white arrows) into the pancaked left ventricle (LV), as is typical after an AtrSO.
(morphologic right) atrium to the systemic venous (morphologic left) atrium (Figure 27A). The baffle leak is generally well identified by color flow mapping interrogation of the baffles and should be suspected when there is progressive dilatation of the left atrial and LV chambers. In some cases, the transthoracic echocardiographic window is not adequate to rule out a baffle leak. Injection of agitated saline can help identify the leak when imaging or color assessment is inconclusive. In addition, TEE can be used when transthoracic echocardiographic acoustic windows are poor. Baffle leaks can be successfully closed by occluder devices (Figure 27B).

Tricuspid Regurgitation. Tricuspid regurgitation can become a problem in patients after the AtrSO because it acts physiologically like mitral regurgitation. Importantly, it can cause RV dilation and dysfunction and is a cause of significant morbidity in this population (Figure 28).

RV Dysfunction. The right ventricle is at risk for failure in a significant proportion of the AtrSO population. Although poorly understood, it is thought that the RV develops dysfunction because its anatomy is not intended to handle systemic pressure over a lifetime. After the AtrSO, the right ventricle is often quite hypertrophied and appears dilated, though this is often because the ventricular septum bows into the left ventricle (Figure 29, Videos 15A and 15B; available at www.onlinejase.com). Ventricular function will be further discussed in a later section.

Patient Preparation. Postoperative imaging of patients with AtrSO is often challenged by poor windows. As with the other surgical procedures, the medical record and surgical report should be reviewed before imaging. The imager cannot tell the difference between the Mustard and the Senning procedure, but it is important to know which has been performed, because risk for systemic venous baffle obstruction is more common after the Mustard procedure, and risk for pulmonary venous baffle obstruction is more common after the Senning procedure.

Scanning Protocol (TTE). The standard protocol for TTE is detailed in Table 6. TTE allows evaluation of the venous pathways in patients with good acoustic windows. Transthoracic echocardiographic subxiphoid imaging is difficult in the adult because of the distance of the probe from the heart. However, it should be attempted because it is one of the best views to assess the inferior limb of the systemic venous channel from the right atrium in a patient after the AtrSO. This is the pathway that all of the pulmonary venous flow must traverse to get to the tricuspid valve. RA, Right atrium.

![Three-dimensional image looking into the pulmonary venous channel from the right atrium in a patient after the AtrSO.](image)

Figure 30 Three-dimensional image looking into the pulmonary venous channel from the right atrium in a patient after the AtrSO.
venous baffle. When the IVC is significantly dilated, obstruction in this limb should be suspected. Often 2D imaging is inadequate, but color flow mapping and spectral Doppler will demonstrate a turbulent jet as the baffle makes its way to the mitral valve (Figures 26B and 26C). The pulmonary venous baffle may be visualized as it is directed toward the diaphragm, and it can be interrogated with color and spectral Doppler in this view as well.

The apical four-chamber view highlights the pulmonary venous baffle (Video 14; available at www.onlinejase.com). When sweeping from posterior to anterior, the imager can sometimes assess the systemic venous baffle as it wraps around the pulmonary venous baffle. Obstruction in the superior limb can be assessed using color and spectral Doppler in this view and an estimate of the mean pressure gradient can be obtained. This view is also ideal to evaluate for dilation and dysfunction of both ventricles. Contrast injection with agitated saline can be used if a baffle leak is suspected.

Imaging from parasternal windows can also be helpful in the assessment of the venous baffles. Specifically the superior limb can be seen crossing the plane of the atrial septum to the mitral valve from the parasternal long-axis sweep. Pulmonary venous baffle assessment is best performed in the parasternal short-axis sweep. The relative size and function of the ventricles can be performed in the parasternal short-axis sweep. The outflow tracts are well seen to assess for obstruction or semilunar valve regurgitation.

The suprasternal window best shows the SVC proximal to the baffle as well as the innominate vein. The pulmonary veins can have Doppler assessment in the “crab” view, and the aortic arch can be interrogated.

Scanning Protocol (TEE). The standard protocol for TEE is detailed in Table 6. TEE may be more sensitive to detect baffle leaks, and baffle obstruction and should be considered when transthoracic windows are poor. TEE is also helpful to guide catheter-based treatment of pathway obstruction such as balloon dilation, stent placement, or device closure of baffle leaks (Figures 27A and 27B, Video 13; available at www.onlinejase.com). Three-dimensional (3D) imaging of the baffles may help the define severity of obstruction as well (Figure 30).

The midesophageal four-chamber view (0°) highlights the pulmonary venous baffle with the probe tilted counterclockwise to the left side. In the same plane directed toward the right, the entrance of the right pulmonary veins into the atrium can be seen. The midesophageal bicaval view (90°) demonstrates both limbs of the systemic venous baffle as they wrap around the pulmonary venous baffle (Video 13; available at www.onlinejase.com). When rotating to the left, the baffle can be seen as it enters the mitral valve. Often a pacemaker lead (if present) can be seen in the superior limb. Assessment of the outflow tracts can be performed in this view as well; sometimes the angle of the probe needs to be adjusted to provide a view of the entire region. Transgastric imaging highlights the IVC. As the probe is withdrawn into the esophagus, the inferior limb of the baffle can be followed as it makes its way to the mitral valve. This view can also be used to assess ventricular function and the outflow tracts.

Reporting Elements and Measurements

- Assessment of the systemic venous baffle (channel) with particular attention to the superior and inferior limbs
- Assessment of the pulmonary venous baffle (channel)
- Assessment of tricuspid valve (systemic AV valve) function
- Assessment of mitral valve (pulmonary AV valve) function with estimation of LV systolic pressure
- Assessment of RV (systemic ventricle) size and function
- Assessment of LV size and function
- Evaluation of size and location of residual VSD, if present
- Evaluation of aortic and pulmonary valve function

Evaluation after the Rastelli or Nikaidoh Procedure

Surgery for TGA with VSD and associated significant LV outflow tract obstruction usually involves some variation of the Rastelli procedure or the Nikaidoh procedure. The Nikaidoh procedure differs from the Rastelli procedure in that the conal septum is divided and the pulmonary valve is resected. The aortic root is translocated posteriorly and anastomosed to the pulmonary annulus. The VSD is then closed to the new location of the aorta. Placement of a conduit from the right ventricle to the pulmonary artery is then performed for the right side. CA translocation sometimes must be performed depending on the anatomy and location of the CA ostia. The benefit of the Nikaidoh procedure is that it potentially avoids the development of subaortic obstruction.

Early sequelae after these operations are generally related to obstruction in the intraventricular baffle secondary to a restrictive VSD or narrowed baffle tunnel to the aortic root. A residual VSD is also common because of the complex baffle positioning. The conduit from the right ventricle to the pulmonary artery has limited longevity in infants and young children because of lack of growth and progressive conduit stenosis and/or insufficiency. In some cases, the LeCompte maneuver is performed in association with the Nikaidoh procedure depending on the relationship of the conduit to the aorta. Thus, branch pulmonary artery stenosis may occur in these cases. TTE is generally the modality of

Table 7: Standard protocol for postoperative transthoracic echocardiographic evaluation after the Rastelli or Nikaidoh operation

<table>
<thead>
<tr>
<th>View</th>
<th>Structure</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Subxiphoid</td>
<td>LV outflow tract, ventricular septum</td>
<td>Assess for subaortic obstruction, residual VSD</td>
</tr>
<tr>
<td>Sagittal</td>
<td>RV outflow tract</td>
<td>Assess for conduit dysfunction and conduit VSD</td>
</tr>
<tr>
<td>Four-chamber</td>
<td>AV valve, ventricular function</td>
<td>Assess RV pressure estimate (tricuspid regurgitation jet)</td>
</tr>
<tr>
<td>Long-axis</td>
<td>LV outflow tract, RV outflow tract</td>
<td>Assess for LV outflow tract obstruction, conduit dysfunction and conduit VSD</td>
</tr>
<tr>
<td>Short-axis</td>
<td>RV outflow tract, branch pulmonary arteries</td>
<td>Assess for conduit dysfunction and conduit VSD</td>
</tr>
</tbody>
</table>

Table 6: Subxiphoid Imaging

| View Structure Comments |
|-------------------------|------------------------|
| Left anterior oblique | LV outflow tract, ventricular septum Assess for subaortic obstruction, residual VSD |
| Sagittal (short-axis) | RV outflow tract Assess for conduit dysfunction and conduit VSD |
| Four-chamber | AV valve, ventricular function Assess RV pressure estimate (tricuspid regurgitation jet) |
| Five-chamber | LV outflow tract Assess for subaortic obstruction |
| Parasternal | LV outflow tract, RV outflow tract Assess for LV outflow tract obstruction, conduit dysfunction and conduit VSD |
| Short-axis | RV outflow tract, branch pulmonary arteries Assess for conduit dysfunction and conduit regurgitation and branch pulmonary artery stenosis |
choice for surveillance of patients who have undergone the Rastelli or Nikaidoh procedure. Rarely, TEE is required for this assessment.

Residual VSD. A residual VSD is a relatively common postoperative complication of the Rastelli and Nikaidoh procedures. Usually, these defects are small peripatch communications that do not impact outcome. Occasionally, an intramural defect will occur because the VSD patch is attached to trabeculations rather than the RV free wall itself (Video 16; available at www.onlinejase.com). Intramural defects can enlarge over time and are associated with postoperative morbidity and mortality; thus, recognition of these types of VSDs is important. If a residual VSD is present, interrogation of the pressure gradient across the defect can give an estimate of RV pressure and helps determine the significance of the residual defect.

Subaortic Obstruction. During both procedures, the VSD becomes the opening of the LV outflow tract. In some cases, the VSD requires enlargement to achieve unobstructed flow from the left ventricle to the aorta. Narrowing of this pathway may occur early or late after surgery. Mechanisms of LV outflow tract obstruction include muscular hypertrophy (when subaortic conus is present), narrowing of the VSD, abnormal AV chordal attachments, and/or fibrous tissue formation. Subaortic obstruction is more likely in the Rastelli procedure than the Nikaidoh procedure (which was developed to avoid this complication). Doppler interrogation helps determine the severity and location of the residual obstruction.

Conduit Dysfunction. Conduits are typically made of pulmonary or aortic homograft material, but prosthetic materials can be used as well. They have a life expectancy of 3 to 10 years depending on the size of the patient, the position of the conduit, and the development of calcification. Many conduits include a valve that degrades over time, resulting in clinically important pulmonary regurgitation or stenosis. The long-term consequences of significant conduit regurgitation are out of the scope of this guideline and are discussed in more detail in the guideline document on tetralogy of Fallot.

Conduit replacement during childhood is frequently unavoidable especially when the first operation is performed in the neonatal period. Obstruction may occur anywhere along the conduit, or the conduit may become diffusely small as the patient grows. Accurate measures of conduit stenosis are difficult using Doppler echocardiography because the modified Bernoulli equation has significant limitations when a long, narrow tube is in place. Thus, RV pressure estimates using the velocity of the tricuspid regurgitation jet (if present) or ventricular septal position may help determine the clinical significance of RV hypertension. Conduit regurgitation is often severe and, in some cases, RV dilation and dysfunction may occur.

CA Stenosis. If CA reimplantation is performed (for the Nikaidoh procedure only), the same issues may occur as in patients who have had the ASO (see that section for further details).

Patient Preparation. In the case of the Rastelli or Nikaidoh procedure, review of the operative note is essential because there are subtle differences in the way these procedures are performed. For either, it is important to know what method was used to provide blood flow from the right ventricle to the pulmonary artery (conduit or another method). It also should be noted if a LeCompte maneuver is performed. Moreover, it is important to know if a CA reimplantation procedure was performed to identify possible CA stenosis. For very young children (generally <3 years of age), sedation may be required to perform a complete postoperative study.

Scanning Protocol. For the Rastelli and Nikaidoh operations, a standard echocardiography protocol is detailed in Table 7. Intraoperative TEE is usually performed to assess for residual VSDs, LV outflow tract obstruction, function of the conduit from the right ventricle to the pulmonary artery, and ventricular performance.

Subxiphoid views will demonstrate a residual VSD. The left anterior oblique view (45° clockwise of frontal view) is ideal to assess the LV outflow tract for subaortic obstruction (Videos 17 and 18; available at www.onlinejase.com). For residual intramural VSDs, the sweep must continue anteriorly to detect these defects (Video 16; available at www.onlinejase.com). A subxiphoid sagittal (short-axis) view demonstrates the RV outflow tract and the proximal portion of the conduit from the right ventricle to the pulmonary artery.

The apical four-chamber view can be used to assess the conduits for hypertrophy and dilation. If tricuspid regurgitation is present, the RV pressure can be estimated from this view; this is generally a more accurate method than the gradient across the conduit. The apical five-chamber view and the parasternal view best display the LV outflow tract for both procedures (Figure 31). If the angle of interrogation is insufficient to assess the Doppler gradient, the mitral valve regurgitation jet can be used to estimate LV pressure with simultaneous measurement of the systolic blood pressure; the difference between these measures gives an estimate of the peak systolic pressure gradient across the subaortic region.

LV outflow tract obstruction is less likely to occur with the Nikaidoh operation than with the Rastelli operation, but the LV outflow tract still requires diligent assessment and follow-up (Video 19; available at www.onlinejase.com). In addition, regional assessment of ventricular performance should be performed (similar to the ASO) because the CAs are often translocated during this procedure.
Reporting Elements and Measurements

- Assessment for residual VSD, location, size, and pressure gradient
- Assessment for recurrent subaortic obstruction
- Evaluation of the right ventricle-to-pulmonary artery conduit or other pathway
- Estimate of RV pressure from tricuspid regurgitation jet, if present
- Assessment of AV valve function
- Global and regional assessment of LV function
- Global and regional assessment of RV function
- Assessment of branch pulmonary arteries

Recommendations. Echocardiography is the primary modality used in the postoperative patient with TGA. For young children, TTE can typically detect all the important complications of the ASO, AtrSO, and Rastelli and Nikaidoh procedures. It should also be the first modality used to evaluate adolescent and adult patients because it is noninvasive, nonradiating, ubiquitous, and portable. If there is concern about a particular issue that is not well delineated on TTE or important structures cannot be identified, TEE may be required. This is particularly true in patients who have had the AtrSO because the systemic and pulmonary venous baffles can be difficult to interrogate by TTE, and this subset of patients are older than those who have had the other surgical procedures.

Assessment of Ventricular Function after the ASO and AtrSO

Assessment of Ventricular Function after the ASO. Assessment of ventricular function is an important component of the clinical evaluation after the ASO. Early LV dysfunction is common and is mainly related to myocardial stunning immediately after surgery. Decreased myocardial function is mainly responsible for the low cardiac output syndrome that can be present during the first hours to days after the operation. Importantly, myocardial stunning generally causes global LV dysfunction. The presence of regional myocardial dysfunction immediately after surgery heralds CA ischemia. This may require further, more invasive investigation or even surgical revision of the CA transfer. Late ventricular dysfunction is mainly related to irreversible global ischemic damage that occurred in the perioperative phase or because of late CA stenosis or occlusion. The presence of LV outflow tract obstruction and aortic regurgitation can negatively affect LV function as well.

For the assessment of LV function after the ASO, echocardiography is the routine first-line imaging modality. Standard echocardiographic techniques for the assessment of LV function, as recommended by the ASE guidelines on chamber quantification and function can be used. This includes measurement of LV dimensions, shortening fraction, ejection fraction (EF), and assessment of regional myocardial function. LV dimensions can be measured using M-mode or 2D images obtained from the parasternal long- or short-axis view at the level just below the mitral valve leaflets. In pediatric patients, these measurements should include Z scores. Mild LV dilation after the ASO has been described and has been associated with the presence of neoaortic regurgitation. Systolic function is evaluated by measuring EF using the biplane Simpson method or the 5/6 area-length method. M-mode evaluation of EF or shortening fraction should be used with caution in this patient group, especially in the early postoperative period, because septal dyskinesia can be present resulting in underestimation of function. If LV dysfunction is suspected, regional myocardial assessment can be helpful to rule out CA ischemia. This is based primarily on visual assessment of regional wall motion in all LV segments using the different standard LV echocardiographic views (short-axis at different levels, apical two-, three-, and four-chamber views). In experienced hands, this has been proved to be a sensitive
RV functional abnormalities may persist.⁷⁵ The right ventricle is structurally normal, so the standard recommended techniques may be used⁷⁶; these include measurement of RV dimensions, tricuspid annular plane systolic excursion, fractional area change, and tissue Doppler measurements. When there is evidence of RV dysfunction, additional imaging might be required to identify the etiology. This might include CMR (to measure RV volumes and EF and to image the pulmonary artery branches and proximal CAs) or angiography (to evaluate the CAs, pulmonary artery branches, and measure pulmonary artery pressures).

Assessment of Ventricular Function after the AtrSO. After the AtrSO, the right ventricle becomes the systemic ventricle. During long-term follow-up, it has been shown that progressive RV dilation, RV dysfunction, and tricuspid regurgitation develop in a significant proportion of these patients.⁶³,⁷⁵ Thus, assessment of RV function and tricuspid regurgitation is essential in the clinical follow-up of this patient group. In most centers, this is based on routine echocardiographic follow-up with the use of CMR in selected patients suspected of having RV dysfunction.

Often, echocardiographic assessment is based on subjective visual evaluation, but recent recommendations suggest the use of quantitative parameters including tricuspid annular plane systolic excursion, fractional area change, and tissue Doppler velocities (Figure 32). It should be noted, however, that these measurements are all influenced by the presence of tricuspid regurgitation. Progressive tricuspid regurgitation may result in increased tricuspid annular motion and also increased fractional area change, which may falsely suggest good function. Thus these measurements should always be interpreted taking the degree of tricuspid regurgitation into account. Khatib et al showed weak but significant correlation between RV fractional area change and RVEF as measured by cardiac magnetic resonance imaging. A reduction of fractional area change < 33% identified an RVEF < 50% with 77% sensitivity and 58% specificity.⁷⁸ Isovolumic acceleration of the RV free wall is another measure that has been used for assessment of RV function after the AtrSO.⁷⁹

Three-dimensional echocardiography is a technique that is potentially very useful for the assessment of RV volumes and EF in this population. However, limitations in imaging windows presently limit its feasibility, and there are concerns about the underestimation of RV volumes especially in dilated ventricles.⁸⁰,⁸¹ Further data are required before this can become a routine clinical technique. RV strain and strain rate imaging may also prove useful in the future. It has been shown that longitudinal systolic strain is significantly reduced in patients after the AtrSO, and the decrease in RV strain correlates with the decrease in RVEF.⁸² Moreover, reduced longitudinal RV strain values have been related to adverse clinical outcomes, including worse New York Heart Association classification and higher N-terminal pro-brain natriuretic peptide levels.⁸³,⁸⁵ A global longitudinal strain RV value worse than −14% predicted RVEF < 45% with 90% specificity and 83% sensitivity. These data are certainly promising and suggest a growing role for speckle-tracking echocardiography in the routine follow-up of patients after the AtrSO. Because the systemic right ventricle is more hypertrophied,⁸⁶ circumferential shortening is increased,⁸⁷ which may partially compensate for the reduced longitudinal strain values. Transverse or radial strain has been demonstrated to be predictive of exercise capacity in patients after the AtrSO, suggesting that circumferential and radial shortening might be important parameters to follow serially over time.⁸⁸ For patients with decreased RV function as detected on routine echocardiography, CMR may be required for further assessment and follow-up.

Table 8: Types of information available from CMR and CTA

<table>
<thead>
<tr>
<th>Anatomic survey</th>
</tr>
</thead>
<tbody>
<tr>
<td>Postsurgeonal assessment</td>
</tr>
<tr>
<td>Relationship of cardiac structures to sternum before reintervention</td>
</tr>
<tr>
<td>Systemic venous and pulmonary venous baffle assessment after the AtrSO</td>
</tr>
<tr>
<td>RV outflow tract and branch pulmonary arteries after LeCompte, Rastelli, Nikaidoh</td>
</tr>
<tr>
<td>LV to aortic pathway after Rastelli, Nikaidoh</td>
</tr>
<tr>
<td>Neoaoartic root and valve function after ASO</td>
</tr>
<tr>
<td>CA imaging</td>
</tr>
<tr>
<td>Reimplanted CAs after the ASO/Nikaidoh</td>
</tr>
<tr>
<td>Right CA compression after Rastelli/Nikaidoh</td>
</tr>
<tr>
<td>Anomalous CAs in patients who have had the AtrSO</td>
</tr>
<tr>
<td>Functional imaging</td>
</tr>
<tr>
<td>Assessment of systemic RV systolic function after the AtrSO</td>
</tr>
<tr>
<td>Assessment of biventricular systolic function and resting wall motion after ASO</td>
</tr>
<tr>
<td>Stress imaging</td>
</tr>
<tr>
<td>Adenosine and dobutamine CMR: perfusion and wall motion at rest and with stress for inducible ischemia</td>
</tr>
<tr>
<td>CT perfusion or FFR by CT has not been studied in CHD</td>
</tr>
<tr>
<td>Valvular regurgitation</td>
</tr>
<tr>
<td>CMR: flow imaging and stroke volume differences (estimates multiple levels of regurgitation)</td>
</tr>
<tr>
<td>CT: regurgitant fraction can be estimated from stroke volume differences when shunting or polyvalvar regurgitation is not present; reproducibility depends on accurate tracing of the ventricles and requires significant training; findings cannot be verified by flow analysis as they can by CMR</td>
</tr>
<tr>
<td>CMR viability</td>
</tr>
<tr>
<td>LGE</td>
</tr>
</tbody>
</table>

CHD, Congenital heart disease; FFR, fractional flow reserve.
Overview of Modality

CMR imaging generates information about the heart and blood vessels by using strong magnetic fields and radiofrequency energy. It is able to provide a comprehensive evaluation of cardiac anatomy and function, including ventricular measurements, angiography, blood flow quantification, and assessment of myocardial perfusion and fibrosis. The primary clinical role of CMR in TGA is postoperative assessment. The information that can be obtained by CMR for patients with TGA is listed in Table 8.

Strengths and Limitations

Among the advantages of CMR in evaluating patients with TGA is that it consistently and noninvasively provides high-quality images regardless of patient size and without the use of ionizing radiation. Moreover, CMR techniques yield accurate and reproducible data regarding both LV and RV size and function, valvar regurgitation, differential pulmonary blood flow, myocardial perfusion, and myocardial fibrosis. Often the quantitative data can be validated “internally” to ensure accuracy, such as by comparing the main pulmonary artery flow to the sum of the branch pulmonary artery flows. Coronary angiography is also reliable; it is feasible with submillimeter resolution, though image quality is reduced in young infants. Finally, because CMR techniques for measuring flow and ventricular function build images over multiple heartbeats, the resulting data represent an average of all these cardiac cycles and are thus more reflective of the patient’s true physiologic state than a single-beat measurement.

One of the drawbacks of CMR is that a comprehensive evaluation typically requires the patient to remain relatively still for 45 to 60 min. Thus, CMR in children younger than 6 to 8 years of age usually necessitates the use of sedation or anesthesia. Newer techniques enable infants <6 months of age to undergo a full study without anesthesia or sedation using the “feed and swaddle” technique. Up to 15% of patients who have undergone the AtrSO have cardiac pacemakers; these devices as well as implantable defibrillators have historically been considered a contraindication to CMR. However, research over the past decade has indicated that CMR in some patients with these devices may be reasonable and relatively safe under specific circumstances. Furthermore, there are now devices explicitly designed and approved for the magnetic resonance imaging

Figure 33 CMR images of TGA following an ASO with a LeCompte maneuver. (A) Typical parallel orientation of the great arteries in TGA (cine steady-state free precession [SSFP]). (B) Anteriorly positioned trileaflet neopulmonary valve (cine SSFP). The pulmonary artery bifurcation is positioned anterior to the ascending aorta as a result of the LeCompte maneuver. This relationship is illustrated with a contrast 3D angiogram: (C) axial view, (D) coronal view showing the pulmonary arteries in cross-section on each side of the ascending aorta, and (E) 3D volume rendered reconstruction. Ao, Aorta; LPA, left pulmonary artery; PA, pulmonary artery; RPA, right pulmonary artery; RV, right ventricle.
Some patients with TGA may have implanted metallic devices such as septal occluders, vascular occlusion coils, and vascular stents. Although such devices often do not pose a safety risk, they can cause image artifact, which may limit the utility of the CMR examination. If intravenous (IV) contrast is needed for the CMR examination, there is minor risk associated with IV line placement including infiltration and bruising. Finally, unlike echocardiography, CMR is not portable or suitable for bedside evaluation.

Preoperative Assessment of TGA with CMR

CMR is seldom requested for preoperative evaluation of infants with TGA, because echocardiography usually provides all of the necessary diagnostic information for surgical decision making. Details of the intracardiac anatomy such as VSD location or the mechanism of LV outflow tract obstruction are usually better delineated by echocardiography. Moreover, reliable visualization of the CA origins by CMR in newborns with TGA has not yet been demonstrated, because image quality is limited by their small size and rapid motion at high heart rates. CMR can be used to assess the thoracic vessels in the rare cases when echocardiography is inconclusive. Moreover, there is a potential role for CMR in patients who have undergone a pulmonary artery banding procedure to prepare a “deconditioned” left ventricle for an ASO. In particular, it can be used to accurately quantify LV mass, volume, and systolic function, though the criteria to predict adequate preparation have yet to be precisely defined.

Postoperative Assessment of TGA with CMR

Evaluation after ASO. CMR is an important alternative and complementary modality to echocardiography in the noninvasive evaluation of patients who have undergone an ASO. Increasing patient size and postoperative scar tissue often limit visualization of the heart and blood vessels by echocardiography but not by CMR (Figures 33A–33E and 34A–34C, Video 20; available at www.onlinejase.com). Accordingly, studies have shown that detection of branch pulmonary artery stenosis in ASO patients by CMR is accurate and superior to the information obtained by echocardiography. Moreover, if the echocardiographic assessment of ventricular parameters or the severity of valve regurgitation is in question, CMR can resolve this uncertainty with reliable

Figure 34 CMR images of TGA following an ASO with a LeCompte maneuver. Using dynamic gadolinium-contrast imaging, 3D reconstructions can be rendered of both the right-sided and left-sided structures separately. (A) Left panel is anterior and middle panel is posterior of the right-sided structures and shows the configuration of the branch pulmonary arteries in the LeCompte maneuver; the right panel demonstrates left-sided structures including a dilated neoaortic root. (B) Three-dimensional reconstruction demonstrates severe left pulmonary artery stenosis. (C) Inversion recovery gradient-echo gadolinium imaging demonstrates the result of stent placement in the left pulmonary artery (red arrow) in a different patient. Ao, Aorta; LPA, left pulmonary artery; LV, left ventricle; PA, pulmonary artery; RPA, right pulmonary artery.
Figure 35 CMR images demonstrating CA imaging and myocardial viability assessment in TGA following an ASO. (A) The left main and left anterior descending CAs arise from the anterior coronary cusp with part of the left circumflex also visualized. In this patient, the proximal right CA was occluded, resulting in an inferoseptal and inferior myocardial infarction as seen on viability imaging in short axis (B) and long axis (C). Normal viable myocardium is black and fibrotic regions are bright (red arrows). LCA, Left CA.

Figure 36 CMR of CA imaging in TGA following an ASO. (A) An axial image demonstrates the proximal right CA originating from the right and anterior facing sinus and the proximal left CA originating from the left and anterior facing sinus. (B) Three-dimensional reconstruction from the same patient shows the coronary origins and courses (red arrows). LCA, Left CA; RCA, right CA.
CMR can provide high-resolution imaging of the proximal and mid CAs and can help define their relationship to the surrounding structures such as the aorta and main pulmonary artery (Figures 35A–35C and 36A and 36B, Video 21; available at www.onlinejase.com). Nevertheless, the published experience assessing CAs in patients with TGA after ASO is limited to a few reports. The largest of these reports consisted of 84 CMR examinations and yielded diagnostic image quality of the proximal CAs in 95% and showed stenosis in 11% of the patients.

There are two principal CMR techniques to diagnose inducible CA ischemia: (1) evaluation for perfusion defects using vasodilator stress agents (e.g., adenosine or dipyridamole) and (2) evaluation for regional wall motion abnormalities, most commonly using dobutamine stress. In addition, the CMR late gadolinium enhancement (LGE) technique is highly sensitive for detecting myocardial infarction and focal fibrosis (Figures 35B and 35C). In two reports describing a total of 55 asymptomatic ASO patients who underwent stress perfusion CMR, no defects at stress were detected. The LGE technique has identified prior myocardial infarction in only a small proportion of patients after ASO. Thus, on the basis of these studies, both CMR stress imaging and LGE appear to have a low positive yield in asymptomatic ASO patients. Larger studies that include symptomatic patients and have longer term follow-up are needed to better define the indications and prognostic value of these CMR techniques.

Patient Preparation. Early in the scheduling process, patients should be assessed regarding the need for anesthesia, sedation, and anxiolytic medication, and appropriate preparations made. Similarly, thorough screening for implanted devices or coils that may be contraindications to CMR or cause image artifact must be performed. For those patients who will receive contrast with their CMR examination, renal insufficiency should be excluded. A peripheral IV or central venous catheter is needed for gadolinium administration in all patients, with IV gauge...
ranging from 24 to 18 depending on patient size. All institutions should have rigorous pre-CMR screening processes to ensure that patients can safely undergo the procedure.

Scanning Protocol. Table 9 shows a scanning protocol that provides a comprehensive CMR evaluation after the ASO. If there is a concern for inducible CA ischemia, a vasodilator or dobutamine stress protocol should also be considered.

Reporting Elements and Measurements

CMR reports should comprehensively address the most common postoperative sequelae and include the following information:
- LV and RV volume, EF, mass, and regional function
- Presence of myocardial fibrosis and/or infarction
- Extent of LV and RV outflow tract obstruction
- Extent of pulmonary artery obstruction and calculation of the branch pulmonary artery flow distribution
- Neoaortic root size and quantitation of neoaortic valve regurgitation
- Presence of residual atrial septal defects and VSDs, and calculation of the pulmonary-to-systemic flow ratio (Qp/Qs)
- Quantitation of significant AV or neopulmonary valve regurgitation
- Description of the CA origins, course, and degree of obstruction
- Presence and quantitation of aortopulmonary collateral vessels

Evaluation after AtrSO. CMR has a central role in the noninvasive imaging surveillance of patients who have undergone the AtrSO. Assessment of the systemic right ventricle, a key concern in this patient group, can be difficult by echocardiography because of its substernal position and complex shape. CMR can routinely provide complete tomographic imaging of the right ventricle, which allows accurate and reproducible measurements of volume, mass, and EF (Video 22; available at www.onlinejase.com). To achieve optimal results, centers should maintain a rigorous and consistent approach to image planning and analysis. Furthermore, to maximize interstudy reproducibility in patients followed longitudinally, the ventricular borders demarcated in the analysis software should be saved so that they can be compared side by side with those from previous studies.

CMR is also indicated to evaluate the systemic and pulmonary venous baffle pathways for obstruction and/or baffle leaks (Figures 37A–37D and 38A–38D). A variety of CMR techniques can be used to demonstrate the baffle anatomy and obstruction, including cine gradient echo, spin echo, velocity-encoded gradient echo, 3D steady-state free precession, and contrast-enhanced 3D magnetic resonance angiography. The absence of a signal void in

![CMR images of an adult patient with TGA after the Senning operation. Dynamic gadolinium contrast imaging with left arm injection demonstrates (A) the left ventricle (LV) connected to the pulmonary artery (PA) with increased signal intensity in the right lung due to left PA (LPA) stenosis; (B) right ventricle and aorta (Ao) becoming signal intense, and then the left lung begins to become signal intense; (C) recirculation phase with signal seen in the pulmonary venous baffle; and (D) with reflux into the lower limb of the Senning baffle, both vena caval limbs of the reconstruction can be visualized during initial injection (red arrows).](image-url)
the cine images, suggest the absence of turbulent flow and therefore implies that there are not significant baffle stenosis or baffle leaks. First-pass perfusion imaging may also help in identifying baffle leaks in these patients. Reversal of flow at the level of the azygous vein by phase contrast imaging may be present with severe obstruction of the superior limb of the systemic venous baffle. The physiologic impact of baffle leaks can be gauged by measuring blood flow in the main pulmonary artery and ascending aorta to calculate the Qp/Qs. Note, however, that a Qp/Qs close to 1 can be seen even in large baffle leaks when there is bidirectional flow; thus, anatomic imaging information and the systemic oxygen saturation must also be considered.

Studies in patients who have undergone the AtrSO have found RV LGE indicative of focal myocardial fibrosis, though the reported prevalence of this finding varies. In cross-sectional studies, the presence and extent of LGE have been associated with older age, RV dysfunction, reduced peak oxygen uptake, arrhythmia, and adverse clinical events. The best evidence establishing the prognostic value of LGE comes from a longitudinal study of 55 AtrSO patients showing that RV LGE was independently associated with a composite end point composed primarily of atrial tachyarrhythmia. Finally, the response of the systemic RV to dobutamine stress or to exercise can be tested by CMR, but the clinical utility of this information has yet to be firmly established.

Patient Preparation. Patients who have undergone an AtrSO tend to be older than those who have had ASO. Considerations regarding preparation for an AtrSO patient are similar to those mentioned above for an ASO patient. If a pacemaker is present, safety and efficacy of performing CMR in this setting must be considered.

Scanning Protocol. Table 9 shows a scanning protocol that provides a comprehensive CMR evaluation after the AtrSO.

![CMR Images](image.png)

Figure 38 CMR images of an adult patient with TGA after the Senning operation. (A) Cine four-chamber view shows the distal systemic venous pathway. (B) A cine coronal view demonstrates both limbs of the systemic venous pathway. (C,D) Three-dimensional reconstructions demonstrating the anterior and posterior portions of the heart, including the Senning baffle.
Reporting Elements and Measurements

CMR reports should comprehensively address the most common postoperative sequelae and include the following information:
- LV and RV volume, EF, mass, and regional function
- Extent of systemic and pulmonary venous pathway obstruction, and presence of collateral veins in response to pathway obstruction
- Presence of baffle leaks and Qp/Qs
- Severity of tricuspid valve regurgitation
- Degree of LV and RV outflow tract obstruction
- Presence of residual VSDs and Qp/Qs
- Presence of myocardial fibrosis and infarction
-Extent and quantitation of aortopulmonary collateral vessels

Evaluation after the Rastelli and Nikaidoh Operations. In patients who have undergone the Rastelli or Nikaidoh procedure, CMR can provide high-quality images of the pathway from the left ventricle to the aortic valve, the conduit from the right ventricle to the pulmonary artery, and the branch pulmonary arteries to assess for obstruction (Figures 39A–39F). Velocity-encoded CMR has been used to estimate the pressure gradient across discrete stenoses by measuring the maximum flow velocity and applying the modified Bernoulli equation similar to echocardiography. These data, however, must be interpreted cautiously, as there are a number of factors that may lead to erroneous velocity measurements, including difficulty aligning with complex flow jets, signal loss, and misregistration artifacts. CMR flow measurements can also quantify the degree of conduit valve and aortic valve regurgitation by calculating a regurgitant fraction. The evaluation of the conduit from the right ventricle to the pulmonary artery, along with CA imaging and quantitation of RV size and function, provides important data to determine whether patients are suitable candidates for surgical conduit replacement or catheter-based interventions such as balloon dilation, stent placement, and percutaneous valve implantation. Finally, CMR techniques can localize residual VSDs and assess their impact through measurement of the Qp/Qs and degree of LV dilation (Figure 40).

Patient Preparation. Patients who have undergone the Rastelli or Nikaidoh operation are less likely to have pacemakers than those who have undergone the AtrSO. Considerations regarding patient preparation are similar to those mentioned above for an ASO patient.

Scanning Protocol. Table 9 shows a scanning protocol that provides a comprehensive CMR evaluation after the Rastelli or Nikaidoh procedure.
Reporting Elements and Measurements

CMR reports should comprehensively address the most common postoperative sequelae and include the following information:

- Extent of obstruction in the pathway from left ventricle to aortic valve, conduit from right ventricle to pulmonary artery, and branch pulmonary arteries
- LV and RV volume, EF, and ventricular mass
- Severity of conduit valve and aortic valve regurgitation
- Presence of residual VSD and Qp/Qs
- Description of the CA origins, course, and degree of obstruction if CA transfer was performed
- Presence of myocardial fibrosis and infarction
- Extent and quantitation of aortopulmonary collateral vessels

Recommendations. CMR should be integrated in the routine evaluation of all postoperative patients with TGA with the frequency dependent on nature of the operation, patient status, and other available clinical data. After ASO, CMR assesses the RV outflow tract and branch pulmonary arteries, quantifies ventricular or valve function, images the proximal CAs, quantifies the Qp/Qs ratio, and assesses for inducible ischemia. After the AtrSO, CMR is recommended to evaluate RV function, tricuspid regurgitation, venous baffle obstruction and leaks, outflow tract obstruction, and myocardial fibrosis. Following the Rastelli and Nikaidoh operations, CMR may be used to assess the pathway from the LV to the aortic valve, the RV outflow tract and branch pulmonary arteries, ventricular and valve function, the proximal CAs, and the Qp/Qs ratio. In some cases, CMR should be considered the primary method for routine noninvasive evaluation with annual or biennial studies.

Table 10 When to consider cardiac CT for TGA if imaging is required subsequent to echocardiography

<table>
<thead>
<tr>
<th>Condition</th>
<th>Recommendation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Patient with pacemaker or defibrillator (CMR generally contraindicated or can cause image artifact)</td>
<td>CMR is generally contraindicated or can cause image artifact.</td>
</tr>
<tr>
<td>Patient with pacemaker being considered for biventricular pacing device to determine central venous and coronary venous anatomy before device and lead placement</td>
<td>CMR is generally contraindicated or can cause image artifact.</td>
</tr>
<tr>
<td>Artifact (from foreign body) on CMR with nondiagnostic image quality for area of interest</td>
<td>CMR is generally contraindicated or can cause image artifact.</td>
</tr>
<tr>
<td>Unable to be imaged in CMR scanner</td>
<td>CMR is generally contraindicated or can cause image artifact.</td>
</tr>
<tr>
<td>Critically ill patient, particularly neonate or other patient considered too high risk for anesthesia</td>
<td>CMR is generally contraindicated or can cause image artifact.</td>
</tr>
<tr>
<td>Critically ill patient of any age that may not tolerate breath holding or length of CMR scan or for evaluation of ventricular assist device or ECMO cannula position</td>
<td>CMR is generally contraindicated or can cause image artifact.</td>
</tr>
<tr>
<td>When CT is indicated to look at noncardiac pathology (i.e., lung parenchyma, airway, skeletal abnormality) and cardiac anatomy can be included without additional risk</td>
<td>CMR is generally contraindicated or can cause image artifact.</td>
</tr>
<tr>
<td>Patient with a prosthetic valve for evaluation of valve function and integrity (calcification, stenosis, coaptation defect, leaflet immobility, paravalvular leak, valve vegetation)</td>
<td>CMR is generally contraindicated or can cause image artifact.</td>
</tr>
<tr>
<td>Patient with ACHD needing CA evaluation before other cardiac surgical intervention</td>
<td>CMR is generally contraindicated or can cause image artifact.</td>
</tr>
</tbody>
</table>

ACHD, Adult congenital heart disease; ECMO, extracorporeal membrane oxygenation.

*Recommendations based on institutions with appropriate technology and trained staff.
Figure 41 Computed tomographic images of the CAs after the ASO. (A) A 3D reconstruction demonstrates a single CA arising anteriorly after reimplantation. The pulmonary artery is cut away from the image. (B) A 2D image shows severe left main CA stenosis after the ASO. Note the neopulmonary root (PA) anterior to the neoaortic root (Ao). (C) A 3D reconstruction after the ASO. Note the stent in the left pulmonary artery, and the substernal right CA (RCA) coursing anterior to the right ventricular outflow tract with a common origin with the left anterior descending CA (LAD). (D) Two-dimensional image demonstrates a substernal left anterior descending CA arising from the right coronary cusp of the neoaortic root, coursing directly anterior to the reconstructed right ventricular outflow tract (RVOT). (E) Two-dimensional image shows a dilated neoaortic root (Ao) with left main CA narrowing (black arrow) directly rightward of the right ventricular outflow tract. LV, Left ventricle; RV, right ventricle.
CARDIOVASCULAR CT

Overview of Modality

Cardiovascular CT is a 3D tomographic imaging technique that uses ionizing radiation to create images with exceptional spatial resolution using very short acquisition times. Recent-generation computed tomographic scanners are able to obtain the data for an anatomic scan or detailed CA images at low heart rates (<60 beats/min) in a fraction of a second or a single cardiac cycle. Detailed CA imaging at higher heart rates and functional imaging data sets are acquired over several heartbeats, usually requiring a breath hold. Cardiovascular computed tomographic technology has rapidly advanced in the past several years and has resulted in submillimeter isotropic spatial resolution and temporal resolution as low as 66 msec. These improvements, combined with radiation dose reduction techniques, have decreased the risk and expanded the use of computed tomographic technology in patients of all ages with congenital heart disease.137-143 Cardiovascular CT provides comprehensive evaluation of cardiac and extracardiac thoracic structures as well as ventricular volumes and functional information when needed. The information that can be obtained by cardiovascular CT is listed in Table 8.
Strengths and Limitations

The strengths of cardiovascular CT are the short acquisition time, the high spatial and temporal resolution of the data set, the ability to safely image patients with pacemakers, defibrillators and retained pacer wires, the ability to image metallic implants with minimal impact on image quality, and the ability to assess the CAs as well as intracardiac and noncardiac structures simultaneously. The short acquisition time makes CT an attractive option for patients who cannot undergo CMR or patients who are hemodynamically unstable.

The rapid data acquisition of the newest computed tomographic scanner technology decreases the sedation and anesthesia needs compared to older scanner platforms. Three hundred twenty–slice volumetric scanners or the second- and third-generation dual-source scanners acquire an anatomic data set in a single heartbeat or a fraction of a second. Studies performed without sedation in children with complex congenital heart disease show no significant movement artifact using these techniques. The data needed for functional imaging gated to the electrocardiogram and CA imaging at high heart rates are acquired over several heartbeats, thus usually requiring a single breath hold over several seconds. Proximal CA evaluation in infants using free breathing techniques and without β-blockade shows excellent correlation to surgical findings.

When sedation or anesthesia is needed, no change in equipment is required and the anesthesia period is relatively short, because the data can be acquired in a few breath hold sequences. Up to 15% of patients have pacemakers after the ASO because of atrial arrhythmias, sinus node dysfunction, or heart block. Patients with a systemic right ventricle and ventricular dysfunction (EF < 35%) may also have defibrillators in place. Thus, cardiac CT is an extremely useful modality under these conditions.

Cardiovascular CT is an ideal modality for patients needing detailed CA evaluation to assess reimplanted CAs for ostial or distal narrowing or kinking and to assess for atherosclerotic disease. It also can determine the relationship of the CAs to adjacent cardiac and sternal structures before repeat surgical or catheter-directed intervention. Both RV and LV volumes and EF can be obtained from an electrocardiographically gated scan. It can also be used in patients who are being evaluated for cardiac resynchronization therapy and upgrade to a biventricular pacing system. Indications for CT in patients with TGA are listed in Table 10.

The main limitations and risks of cardiovascular CT are the use of ionizing radiation and the need for a peripheral IV line and iodinated contrast agents in almost all patients for vascular opacification. An additional limitation is that not all institutions have access to recent-generation scanner platforms or have trained personnel who can adapt protocols specifically for congenital heart disease. Cardiovascular CT in congenital heart disease falls between the traditional disciplines of cardiology and radiology, and almost all practitioners will need additional training or exposure for clinical competence.

Sedation and Anesthesia. For older generation scanners with image acquisition over 5 to 15 sec, sedation may be needed to decrease both respiratory and cardiac motion in patients too young to cooperate. Anesthesia in children with congenital heart disease may have some procedural risk for adverse events.

Vascular Access. A peripheral IV line or central venous catheter is needed for contrast administration in all patients, with IV gauge ranging from 24 to 18 depending on patient size. Both power injectors and hand injection are used for contrast administration, with a low rate of adverse events.

Iodinated Contrast Exposure. Iodinated contrast is used in almost all patients for vascular opacification. The typical contrast dose is 1 to 2 mL/kg, which is usually well tolerated. Care must be used in patients with a history of renal dysfunction or failure. Allergic reactions are relatively uncommon but increase with age.

Medications to Lower Heart Rate. For detailed CA imaging, a heart rate < 60 beats/min maximizes the potential for fully diagnostic images in a single interval and allows the lowest radiation exposure. Higher heart rates often require acquiring the data in end-systole, or widening the acquisition window to include end-systole and early diastole. Heart rate variability also widens the radiated phase of the cardiac cycle (called the acquisition window) and will increase the radiation dose. Preprocedural medication may lower both heart rate and heart rate variability. Beta-blockade protocols have been described for adult and pediatric patients, with a good safety profile. Each patient must be screened for contraindications to β-blockers. Patients with pacemakers should have the device interrogated and optimized to achieve AV synchrony during image acquisition.

Radiation Exposure. Radiation exposure is considered to increase the risk for cancer, particularly in young patients with longer life spans. The risk for radiation exposure will vary widely depending on the use and aggressiveness of dose reduction techniques. Radiation doses delivered by cardiac CT have decreased considerably with newer technology, but higher doses may still be delivered if there is not close attention to patient specific dose reduction techniques. A single-institution study showed the median dose for electrocardiographically gated studies in pediatric patients was reduced from 12 to 1.2 mSv between 2005 and 2013. To minimize diagnostic risk, each scan must be tailored to the individual patient and clinical question. Radiation dose for CT angiography has been shown to be 15-fold less than cardiac catheterization in pediatric patients using newer technology and aggressive radiation dose reduction. Physician input and direct supervision is required for patient preparation, scan acquisition, and image interpretation. Estimated radiation doses of approximately 1 mSv are reported for a wide range of congenital cardiac applications, including a cohort of pediatric patients with electrocardiographically triggered coronary scans. Not all centers have achieved this ability as of yet.

Preoperative Assessment of TGA with CT

Cardiac CT is rarely needed before surgical intervention for patients with TGA. The exception is for the definition of complex vascular anatomy in patients with heterotaxy syndrome or patients with extracardiac anomalies. When neonatal anatomic information is needed preoperatively, a prospectively electrocardiographically triggered high-pitch helical or volumetric scan can be obtained without sedation.

Postoperative Assessment of TGA with CT

Refer to the sections above (echocardiography, CMR) for complete description of the anatomic targets of imaging after surgery for TGA. The anatomic targets are identical for all modalities. The CT data set can be oriented in the typical heart-oriented views similar to echocardiography or CMR for illustrating anatomy and facilitating communication with cardiologists and surgeons.

Evaluation after ASO. The anatomic targets after the ASO are similar for all modalities. Cardiovascular CT is typically reserved for
patients who have contraindication for CMR, particularly those with implanted devices. Complete 2D and 3D anatomic assessment of the neopulmonary root, branch pulmonary arteries, neoaortic root, and reimplanted CAs can be performed by CT. CA lesions in patients after the ASO may cause myocardial ischemia leading to ventricular dysfunction, arrhythmias, and sudden death. CT can provide high-resolution images of the CAs and can define the relationship of the CAs to adjacent cardiac structures or to the sternum (Figures 41A–41E). Many patients undergo pulmonary arterial intervention to relieve stenosis of the neopulmonary root or branch pulmonary arteries and CT is the ideal method for assessment of the pulmonary arteries in the area of metallic stents in whom CMR is generally nondiagnostic (Figure 42).

Evaluation after AtrSO. The anatomic targets after the AtrSO are similar for all modalities. Cardiovascular CT is typically reserved for patients who have a contraindication for CMR, particularly those with implanted devices (very common in this population). Assessment of the systemic and pulmonary venous pathways for a leak or obstruction is an important part of the postoperative evaluation. The venous pathways have a complex 3D structure that can be difficult to image by echocardiography. The most common site of systemic venous pathway narrowing or obstruction is at the distal superior limb at its entrance into the right atrium (Figure 43). CT is well suited for visualization of this region as well as for evaluation of the pulmonary venous pathway (Figure 44). Decompressing collateral vessels are often visible (Video 23; available at www.onlinejase.com). Systemic venous pathway obstruction is generally treated with stent insertion at the site of obstruction. CT is the method of choice if anatomic restenosis is suspected because of metallic artifact from stents that occurs using CMR. CMR, however, can accurately obtain flow before or after the stent and to a limited extent, visualize the lumen (Figure 34C). Baffle leaks are common and are problematic for CT if a biventricular opacification is used to assess both the right and left heart structures simultaneously. Typically, a baffle leak is best seen by a negative or positive contrast jet, but this is not reliable if both atria are opacified similarly. Pacing and defibrillator leads can be well seen by CT and coronary venous anatomy can be imaged before repeat electrophysiologic intervention such as placement of biventricular pacing leads.

CT can also be used to calculate LV and RV volumes, mass, and EF in patients in whom echocardiography is insufficient and CMR is not possible (Video 24; available at www.onlinejase.com). However, in most cases, CT remains a third-line imaging option.

Evaluation after Rastelli and Nikaidoh Operations. The anatomic targets after the Rastelli and Nikaidoh procedures are similar for all modalities and are described in detail in the echocardiography and CMR sections. The conduit from the right ventricle to the pulmonary artery of patients with Rastelli or Nikaidoh operations almost universally becomes stenotic and requires replacement, typically in the first decade of life. CT can be used to detect this complication and provide
information on the location and extent of conduit calcification and the relationship of the conduit to the CAs and to the sternum in consideration of reoperation (Figure 45). Right CA lesions are more common after the Nikaidoh procedure because of the leftward translocation of the aorta, and this complication is well seen by cardiac CT.

Patient Preparation. A detailed review of the patient history and the pertinent clinical question must be determined for each scan before data acquisition. The scan quality needed (and the resulting radiation dose) will vary considerably on the basis of the indication. Each scan must be tailored to the individual patient. Renal dysfunction needs to be considered with regard to use of contrast agents. Direct physician input is required for patient review, scan planning and acquisition, and interpretation.

In patients with electrophysiologic devices, the underlying heart rhythm and pacing mode should be interrogated and optimized to achieve AV synchrony. If the underlying rate is similar to the paced rate, the paced rate can be reduced or increased to achieve either the underlying rhythm or the paced rhythm but not a competing rhythm.

Scanning Protocol. The following are modifications to standard cardiovascular CT protocols specific to patient with TGA.

Contrast Injection Protocols. For all patients with TGA, there is the potential for both right and left heart pathology. A biventricular injection protocol should be used to opacify the right and left heart simultaneously during a single acquisition. This can be achieved by giving a longer contrast injection at a lower rate, a two-phase contrast injection with a short interval of a standard injection rate followed by a second phase of a slower injection rate, or by keeping the initial injection rate the same and giving the second phase of the injection as a mixture with saline. All injection protocols are followed by a saline flush. This is sometimes called a triphasic injection (two phase contrast and one phase saline).

Scan Initiation. Scan acquisition can be initiated by bolus tracking, a timing bolus, or manual bolus tracking. A timing bolus will increase the contrast dose, and potentially increases the radiation dose. Extending the contrast injection and triggering the scan off the aorta eliminates the need for a timing bolus and allows visualization of both the right and left heart simultaneously. Manually triggering the scan from visualization of opacification on the monitoring sequence is also a reliable method of image acquisition. If there is a high suspicion for superior limb baffle obstruction after the AtrSO, the monitoring sequence and contrast injection should be extended to allow the delayed cardiac opacification of aortopulmonary collateral vessels.

Scan Sequence.
- Retrospectively electrocardiographically gated: This scan mode should be reserved for high resolution CA imaging in a patient with a high and/or irregular heart rate that cannot be normalized by medical management. The scanner will automatically widen the acquisition window if arrhythmia or heart rate variability is detected during the monitoring period or during scan acquisition.
- High-pitch prospectively electrocardiographically triggered or volumetric scan mode: This scan mode can be used for anatomic survey in all patients. It can be used for detailed CA imaging in patients with heart rates < 60 beats/min.
- Prospectively electrocardiographically triggered: This scan mode can be used to image the CAs when there are higher heart rates. The acquisition window should be set for either end-systole or end diastole depending on heart rate. The width of the acquisition window will depend on the CA detail needed and should be kept to a minimum.
- Prospective triggering via an absolute trigger delay ("millisecond scanning"): This scan mode will acquire data for a specified millisecond time period from the prior QRS, rather than as a percentage of the cardiac cycle. This can be helpful in patients who have arrhythmia or to obtain systolic CA images in patients with higher heart rates.
- Electrocardiographically triggered with pulse modulation for function: In this scan mode, the fully radiated portion of the cardiac cycle is set using the minimal acceptable acquisition window, with approximately 20% of radiation given for the remainder of the cardiac cycle. This provides a high signal diastolic data set in addition to a lower signal systolic data set that is sufficient for estimation of function. Typical data sets are reconstructed in 20 phases per cardiac cycle. Lower doses can be used because the data are typically reconstructed in thicker data sets for evaluation of function (6-8 mm).

Scan Range. The usual scan range for an adult coronary computed tomographic scan is approximately 12 cm. The scan range for all patients with TGA should include the cardiac silhouette and branch pulmonary arteries. The scan range should be extended superiorly for patients with an atrial baffle to assess for baffle patency and collateral vessels.

Recommendations for CA Imaging.
- Consider the use of β-blockade to decrease heart rate and allow use of prospectively electrocardiographically triggered scan modes when possible.
- Use the minimal R-R interval needed on the basis of heart rate (acquisition window), or consider the use of millisecond scanning if there is significant heart rate variability.
- Use the lowest scanner output that will provide a diagnostic image for patient size (tube voltage and tube current–time product).
- Use patient-based automated tube current modulation if available.
- If iterative reconstruction is available, prospectively lower scanner output by 30%.
- Limit the scan range to the area of clinical interest.
- Use a biventricular contrast injection protocol (triphasic) to opacify the right and left sides of the heart simultaneously.

Right and Left Heart Anatomy/Biventricular Function Analysis.
- If fine detail is not needed, consider use of wider collimator and prospectively decrease scanner output (tube voltage and tube current–time product).
- Use a biventricular contrast injection protocol (triphasic) to opacify both the right and left heart simultaneously.
- Increase scan range to include the area of interest (systemic venous and pulmonary venous baffles, aortic root).
- Use electrocardiographic pulse modulation with a narrow acquisition window and low tube voltage to decrease radiation dose for functional imaging. Higher noise levels are tolerated because the data are often reconstructed in thicker data sets for function analysis (6-8 mm).

Reporting Elements and Measurements. All anatomic elements should be reported as described in the complete sections above for echocardiography and CMR. The phase of the cardiac cycle should be noted for thoracic vasculature measurements for accurate comparison to other modalities. Radiation dose reporting and estimates are not yet standardized. Scan dose-length product and/or volume computed tomographic dose index on the basis of a 32-cm phantom, scan length, and scan sequence used should be reported. Scan heart rate should be reported for electrocardiographically triggered examinations.

Recommendations. Cardiovascular CT is an emerging technology that has many applications in TGA. It is usually a third-line modality for patients in whom CMR is contraindicated, but it may be considered a second-line modality for selective indications such as detailed CA imaging or evaluation of extracardiac structures. Appropriate technology and well-trained personnel may not be available at all institutions, and aggressive dose reduction techniques should be implemented for every patient to decrease diagnostic risk.
myocardium in the case of an acute CA occlusion. Glucose use with exercise stress is primarily used to distinguish hibernating from infarcted regions of the myocardium. This allows the measurement of regional myocardial blood flow. Although a resting study may be performed in isolation, SPECT is more typically performed as a combined rest and stress imaging protocol. Rest and stress images are compared for qualitative differences in the regional isotope uptake (Figure 46). Software advances have decreased acquisition time and radiation exposure.182

Exercise is the most common stress modality. The advantages of exercise are higher cardiac output and myocardial oxygen consumption compared with pharmacologic stress. Importantly, exercise is also more physiologic and more closely mimics activities of daily living. Pharmacologic stress is usually performed in patients who are either too young to exercise or cannot exercise because of physiologic limitations. The agents most commonly used for pharmacologic stress are adenosine and dobutamine. Adenosine causes maximal dilation of the coronary resistance arterioles. This unmasks proximal stenosis in the larger CAs resulting in decreased regional flow to those areas. As such, it is most useful in those conditions such as TGA where fixed stenotic CA lesions are a concern. Dobutamine infusion raises the heart rate and blood pressure resulting in increased myocardial oxygen consumption. In this sense, it mimics exercise although the effects are more variable. In general, dobutamine usually achieves lower levels of cardiac stress than maximal exercise.183-185

Similar to SPECT, positron emission tomography (PET) uses gamma camera technology to measure regional myocardial blood flow. Positron emission tomographic imaging protocols for myocardial blood flow are essentially the same as pharmacologic stress protocols for SPECT. Because of the extremely short life of positron-emitting isotopes (which need to be generated near or onsite and in a very close temporal relation to their use), they are not suitable for use with exercise stress. Like SPECT, PET can be used to assess qualitative differences in regional myocardial blood flow. In addition, with proper software, quantitative flow can be measured for the various regions of the myocardium. This allows the measurement of regional myocardial blood flow reserve when combined with maximal coronary vasodilation by adenosine.186,187

Less commonly, PET is used to assess myocardial metabolism. This is primarily used to distinguish hibernating from infarcted myocardium in the case of an acute CA occlusion. Glucose use will be present in the hibernating ischemic myocardium but not in infarcted myocardium. Positron-emitting fluorodeoxyglucose (18F-FDG) will be taken up by the hibernating myocardium, indicating viability, and can be used in decisions about possible revascularization procedures.188

Strengths and Limitations

The most obvious strength of SPECT over other modalities to evaluate CA status is the ability to combine this imaging modality with maximal exercise. This allows assessment of regional myocardial blood flow with the highest levels of physiologic stress. It also permits an assessment of CA perfusion with exercise-induced symptoms. This is not typically available with other modalities such as CMR that require either pharmacologic stress or submaximal exercise.

Data regarding the sensitivity and specificity of SPECT and PET in identifying significant CA lesions in pediatric acquired and congenital heart disease are very limited. This is due to the small number of pediatric studies, the heterogeneous populations that have been evaluated, and the usually asymptomatic condition of the patients at the time of evaluation.189,190 The most significant limitation to nuclear scintigraphic imaging is exposure to ionizing radiation. Even with the recent improvements in hardware and software, this remains a major concern especially for pediatric patients. The range of radiation for these procedures is between 7 and 10 mSv.191

Postoperative Assessment of TGA with Nuclear Scintigraphy

Because the ASO necessitates CA transfer from the native aortic root to the neoaortic root, morbidity and mortality due to CA ischemia may occur.192 Possible mechanisms are intimal proliferation around the suture line of the reimplanted ostia, occlusion, compression, or kinking of the CAs. Additionally, a relatively high reimplantation in the ascending aorta, outside the sinuses of Valsalva, may reduce CA flow, particularly during exercise.

There are few reports of the use of nuclear scintigraphy in the assessment of the ASO. Comparison of these reports is limited by the heterogeneity of the subjects studied in each of the series. Studies evaluating the use of SPECT to detect CA blood flow abnormalities in symptomatic patients have reported sensitivity ranging from 50% to 78% and specificity ranging from 69% to 90%.39,193 The yield of SPECT for asymptomatic subjects has been extremely low, and positive studies have been restricted to those subjects with either a high-risk perioperative course or high-risk CA anatomic variant. In the most recent study, Pizzi et al.194 evaluated 69 patients, of whom 64 were asymptomatic. There were two fixed and six reversible perfusion defects. Of these eight patients, five had either perioperative ischemia and/or an atypical CA variant.

There are also limited data regarding the utility of SPECT in the evaluation of myocardial perfusion following operations for revascularization of patients with significant CA stenosis or occlusion. Raisky et al.195 used SPECT to evaluate 18 of 19 patients following revascularization operations for angiographically diagnosed stenosis or occlusion of CAs after the ASO. SPECT was negative in 16 and minimally positive in two subjects. This was consistent with the CA patent at the time of these studies. These findings would suggest that SPECT may have utility as a follow-up screening tool for revascularization. However, the major weakness of this study is the lack of preoperative SPECT to compare with either the preoperative angiography or the postoperative SPECT.

Patient Preparation. Because of the need for multiple IV line placements and the time required, 2-day protocols should be avoided. A standard 1-day rest/stress protocol is usually optimal. In certain circumstances, a stress only or rest only imaging protocol can be considered.

Scanning Protocol. Following placement of an IV line, resting isotope infusion is performed. Dose should be based on weight for nonobese children. The total dose is typically divided into one quarter given as the first resting injection and three quarters injected during stress. In adolescents, this will result in a dose of approximately 6 to 10 mCi at rest and 20 to 30 mCi with stress.183,184 Resting images are obtained, and ≥45 min is allowed for isotope decay before beginning the stress study. When exercise is the stressor, injection of the isotope should occur as close as possible to peak exercise.
encouraging the patient to exercise for 1 min after injection. Following completion of the stress test, repeat imaging is performed.

Pharmacologic stress should be used when exercise cannot be performed. Because of its very short half-life and vasodilatation properties, adenosine is the agent of choice for evaluating stenotic CA lesions. Resting images are obtained as with the exercise protocol. A second IV line is typically needed for adenosine infusion. After obtaining resting images and suitable decay time, the adenosine infusion is started at 0.14 mg/kg/min. The infusion is continued for 6 min with injection of the isotope at 3 to 4 min into the infusion. The infusion can be stopped for side effects with no other intervention generally needed because of its very short half-life. Poststress images are obtained as with the exercise stress.

PET is currently performed at a very limited number of centers. In general, the protocol for the assessment of regional myocardial blood flow is very similar to SPECT using pharmacological stress. Choice of isotopes is generally center specific.

Recommendations. Given the significant radiation exposure even with state-of-the-art equipment and software, nuclear scintigraphic imaging should not be used for routine screening of asymptomatic low-risk populations. Similar to adults with suspected CA disease, single-photon emission computed tomographic screening to evaluate symptoms is reasonable in high-risk populations. High-risk populations include those patients with atypical CA patterns (especially the presence of an intramural CA course), a history of perioperative ischemia, or a history of documented CA stenosis. In addition, patients in whom ST-segment changes during stress are unreliable markers of myocardial ischemia (such as those with a bundle branch block) also fall into this category. Nuclear scintigraphic imaging should also be considered for screening asymptomatic high-risk patients before participation in vigorous athletics. Finally, SPECT should be considered when looking for evidence of regional myocardial ischemia following revascularization procedures for stenosis or occlusion. Imaging with PET is currently done only rarely and at a relatively small number of institutions. As such it is probably not appropriate to make generalized recommendations for the use of PET at this time.

EXERCISE AND STRESS ECHOCARDIOGRAPHY

Overview of Modality

The exercise or pharmacologic stress test can be a useful adjunct to the postoperative assessment of a patient with TGA. After ASO, a stress evaluation is helpful in detecting problems with myocardial perfusion potentially associated with the translocation and reimplantation of the CAs. Moreover, in the ASO or the AtrSO, stress testing helps determine contractile reserve and exercise capacity.

Stress testing necessitates administering a stressor (e.g., exercise or pharmacologic agent) and evaluating the effects of the stressor on the heart with an appropriate sensor (e.g., electrocardiography, echocardiography, SPECT, CMR). The types of stressors and sensors employed depend on many factors including patient age, indications for testing, and sensitivity and specificity of the sensor.

Strengths and Limitations

Traditional echocardiography is performed with the child in a quiet, resting state, a condition in which children are found for only a minority portion of their typical day. The value of stress echocardiography is that it provides valuable assessment of myocardial perfusion, contractile reserve, and general hemodynamics in a nonresting state. The limitations of stress echocardiography are largely related to image quality. In particular, obtaining adequate images during exercise can be challenging. Various strategies can be used to help overcome these difficulties, such as having the patient hold an exhalation or obtaining images during the immediate recovery phase (rather than at maximal exercise). In addition, for patients without residual shunts, contrast agents can be given to enhance cardiac opacification. Finally, pharmacologic stress can be used as a surrogate for exercise and will avoid motion and respiratory artifact associated with exercise testing.

Evaluation of Myocardial Perfusion

Assessment of myocardial perfusion is discussed in the previous section in detail.

Exercise Capacity and Contractile Reserve

The other major use of stress testing in the TGA population is in the assessment of exercise capacity and contractile reserve.

Evaluation after ASO. Compared with AtrSO patients, the ASO population has much greater exercise capacity, most likely because the operation is more physiologic. Nevertheless, functional capacity in the ASO population is not normal. Many studies have shown that decreased exercise tolerance is due to chronotropic incompetence. Other factors leading to decreased exercise capacity are abnormal CA flow reserve, reduced levels of physical activity (deconditioning), and longer follow-up. This latter finding is particularly concerning given the expected better myocardial performance associated with an ASO over the AtrSO. Giardini et al. performed exercise echocardiography on 60 ASO patients at a mean age of nearly 14 years. The maximal VO2% was 84% of predicted. Correlates of reduced maximal VO2% were RV outflow tract maximal velocity > 2.5 m/sec.

Evaluation after AtrSO. Impairment of (systemic) RV function and resulting heart failure is a significant problem in patients undergoing prior Mustard or Senning operations. To help predict those patients at risk for systemic ventricular dysfunction, investigators have used stress echocardiography. Li et al. performed dobutamine stress echocardiography as well as exercise testing in 27 adult patients after the Mustard procedure. Despite the absence of any symptoms, exercise capacity in these patients was significantly depressed compared with reference values. Decreased exercise capacity correlated with decreased systemic ventricular free wall excursion at rest and during dobutamine stress.

Protocol. Routine Bruce and ramp protocols are used for stress testing in children after surgery for TGA. Stress echocardiography can be used to assess for regional wall motion abnormalities after ASO or after CA reimplantation in patients who have undergone the Nikaidoh operation. ASE guideline recommendations can be used for stress echocardiography. At peak exercise, echocardiography can also be used to assess outflow gradients.

Recommendations. Growth and patency of the CA anastomoses remain significant issues because of reports of myocardial ischemia in the TGA population. Consensus regarding the appropriate monitoring examinations is lacking. Some have recommended serial myocardial perfusion stress testing every 3 years or so during periods of growth and before high school sports participation. Others suggest that stress testing for evaluating myocardial perfusion should be reserved for those patients with symptoms, congenitally abnormal CA pattern, or perioperative ischemic issues.
Monitoring exercise capacity in both ASO and AtrSO patients remains an important diagnostic and predictive test. Chronotropic incompetence during exercise is known to be associated with increased mortality in adults. In these populations, subclinical ventricular dysfunction can be unmasked in patients with normal ventricular function at rest. Long-term follow-up is necessary to determine the significance of these findings.

CARDIAC CATHETERIZATION AND ANGIOGRAPHY

Overview of Modality
The role of cardiac catheterization and angiography has evolved in patients with TGA. In the past, patients required diagnostic catheterization and angiography to determine the relationship of the great arteries to the ventricles (to prove they had TGA) and to evaluate the atrial septal communication. BAS is performed if there was profound cyanosis and the atrial communication is considered inadequate. This can be performed in the cardiac catheterization laboratory under fluoroscopy or at the bedside with echocardiographic guidance. Presently, BAS is completed in anticipation of an ASO, which is usually performed within the first week of life. In the early era of surgery, adequate atrial level mixing by BAS enabled patients to wait for an AtrSO, which was typically performed weeks or months later. After the AtrSO, the systemic and pulmonary venous baffles often require evaluation in the cardiac catheterization laboratory to diagnose and treat stenoses and leaks. The placement of transvenous pacemaker leads makes intervention for these types of problems technically challenging. In the early years of the ASO, catheterization and angiography had a role in defining CA anomalies. In the modern era, improved echocardiographic imaging and surgical techniques have made this less of an issue. Patients with TGA and posterior malalignment VSD who undergo the Rastelli operation are prone to recurrent subaortic stenosis that may require hemodynamic assessment by cardiac catheterization. Moreover, the conduit from the right ventricle to the pulmonary artery has a finite life span, and many of these patients must return to the cardiac catheterization laboratory for percutaneous pulmonary valve or stent placement within the conduit.

Strengths and Limitations
Angiography is the oldest imaging modality available in cardiology. It has been used since the 1950's to provide anatomic information in patients with congenital heart disease. It provides excellent detail about CA anatomy. It also delineates the branch pulmonary arteries. In patients with a VSD, angiography allows the detection of additional VSDs (which can be challenging to detect by echocardiography). The major limitation of cardiac catheterization is that it is an invasive procedure with potential vascular and cardiac injury. With any invasive procedure, there is a small risk for significant morbidity and even mortality. Fluoroscopy requires radiation exposure. Moreover, sedation or general anesthesia is required in most cases.

Preoperative Assessment of TGA with Cardiac Catheterization and Angiography
In the modern era, the role of cardiac catheterization in patients with TGA is reserved primarily for intervention, specifically, BAS in neonates with insufficient mixing at the atrial level. Transthoracic echocardiographic guidance has enabled bedside BAS in the intensive care unit at some institutions. Other institutions prefer to perform the procedure in the cardiac catheterization laboratory. Bedside intensive care unit procedures are usually performed by umbilical venous access but can also be performed with femoral venous access. The location for BAS is institution specific in a hemodynamically stable patient. In an acidotic unstable patient who is already receiving prostaglandin infusion, emergent BAS should be performed promptly (Figure 47). If TTE has not adequately delineated the CA anatomy, aortic root angiography may be used to visualize the CA origins. An injection in the ascending aorta, entered prograde from the right ventricle, using a balloon occlusion technique, will usually define the course of the CAs. This is sometimes performed after BAS.

Angiography may be used in TGA to identify multiple VSDs, LV outflow tract obstruction, septal alignment, AV valve regurgitation, or associated aortic arch anomalies. However, the use of angiography for preoperative diagnosis is largely historical. In select patients, there may be a need to directly measure pulmonary artery pressure, calculate pulmonary vascular resistance, or test pulmonary vascular reactivity if there is suspicion of PH.

Assessment of Postoperative TGA with Cardiac Catheterization and Angiography
Evaluation after ASO. Patients after ASO rarely require routine cardiac catheterization. The role for angiography after ASO is currently reserved for select patients in whom incremental information is needed. In the immediate postoperative period after an ASO, if an infant cannot be weaned from cardiopulmonary bypass, there is a role for angiography to determine patency of the proximal CAs. In addition, new onset of ventricular arrhythmia warrants CA imaging to exclude ischemia. If stenosis is diagnosed, there may be a role for CA stenting in this clinical setting.

After ASO, 20% to 30% of patients develop proximal branch pulmonary artery stenoses (Figure 48). Some of these patients...
may require proximal pulmonary artery branch stent placement early in life. These stents may require redilation with future cardiac catheterizations as the child grows. Three-dimensional rotational angiography has shown promise as a tool to assist the interventionalist with balloon angioplasty and stent placement (Figure 49).

Up to 30% of patients with TGA may have aortopulmonary collateral vessels. If large, these vessels can create a hemodynamically important source of excess pulmonary blood flow after the ASO. Descending aorta angiography can delineate these vessels, and transcatheter closure devices or other occluders can be used to ameliorate the shunt.

Evaluation after AtrSO. Systemic Venous Baffle Stenoses and Leaks. Superior limb baffle stenosis occurs in up to 30% of patients after a Mustard operation; it may be slightly less frequent in patients after a Senning operation. In addition, approximately 5% of patients who had an AtrSO may develop hemodynamically important inferior limb baffle stenosis. Cardiac catheterization accurately identifies baffle stenosis and baffle leaks. Baffle leaks can be addressed in the cardiac catheterization laboratory with the use of commercially available septal closure devices (Figure 27B). Before transvenous pacemaker lead placement, a thorough evaluation for interatrial shunting should be performed. If a baffle leak is detected, it should be addressed before pacemaker placement because of the concern that paradoxical emboli may result from debris accumulation on the lead.

Angiography of the superior and inferior limbs of the systemic venous baffle is performed via standard femoral venous access. Baffle narrowing tends to be intracardiac near where the baffle crosses toward the morphologic left atrium (Figure 50). Systemic venous baffle stenosis may be underestimated by noninvasive imaging, especially in adults with suboptimal acoustic windows. In a recent study, unrecognized baffle stenoses (gradient ≥ 4 mm Hg) were identified and treated in the catheterization laboratory. Flow into the azygos vein can confound assessment of baffle stenosis because it decompresses the SVC and thereby decreases the measurable gradient. Systemic venous baffle stenosis has been treated with open cell, bare-metal stents originally designed for biliary use. Covered stents may also be used in this manner.

The placement of transvenous dual-chamber pacing systems is fairly common after AtrSO. The pacing leads course posteriorly and appear in unique locations (left ventricle) compared with the usual position in an anatomically normal heart. Pacemaker leads coursing through the superior limb of the systemic venous baffle provide unique issues if stenosis develops and stent placement is required. Although it is never optimal to "jail" a pacing lead against the wall of the baffle with a stent, sometimes this is
unavoidable. Patients with jailed pacing leads need meticulous follow-up to ensure that the lead function remains normal.

Approach to Pulmonary Venous Baffle Obstruction. Pulmonary venous baffle obstruction is more common after the Senning operation compared with the Mustard operation because of the manner in which native atrial tissue needs to be tailored to form the systemic venous baffle. It has been estimated that 8% of patients after Senning operation develop hemodynamically important pulmonary venous baffle obstruction. It is a potentially repairable cause of PH in patients with TGA. Transbaffle approach through an existing defect or use of a transeptal puncture can be used to address this issue. The area of pulmonary venous baffle obstruction can also be approached in a retrograde manner from the systemic right ventricle. The retrograde approach has inherent issues related to tricuspid valve trauma, which may be deleterious to the patient’s overall condition. Often, reoperation is required.

Evaluation after Rastelli or Nikaidoh Operation. Inherent to the long-term follow-up of patients with TGA after the Rastelli or Nikaidoh operation is the finite life span of the conduit from the right ventricle to the pulmonary artery. Freedom from reoperation or death after conduit placement has been reported at 54% at 10-year follow-up. In addition, freedom from major homograft dysfunction (primarily regurgitation) at 10-year follow-up has been reported to be only 22%. Patients after the Rastelli or Nikaidoh procedure are destined to require multiple sternotomies for conduit replacement. In the current era, the role of percutaneous pulmonary valve placement has resurrected the need for cardiac catheterization and angiography. The Melody (Medtronic, Minneapolis, MN) and the SAPIEN (Edwards Lifesciences, Irvine, CA) valves are used worldwide for treatment of conduit or pulmonary bioprosthetic valve dysfunction.

Patients with TGA after a Rastelli or Nikaidoh operation have benefited from use of these percutaneous valves. In the US Melody valve clinical trial, patients with TGA and conduits from the right ventricle to the pulmonary artery constituted approximately 15% of those implanted with a percutaneous pulmonary valve. Before Melody valve implantation, preparing the conduit from the right ventricle to the pulmonary artery with a bare-metal stent has become a standard procedure. The bare-metal stent provides a stable landing zone for the Melody valve and decreases the incidence of stent fracture. The conduits in these patients have been inserted in an extra-anatomic location. Therefore, CA angiography during conduit balloon dilation ensures that CA occlusion does not occur when the Melody valve is expanded. Short-term follow-up data from patients who underwent percutaneous pulmonary valve replacement are good. Freedom from significant valve regurgitation has been excellent (>90% at 4 years). In the initial US trial, recurrent valve stenosis afflicted nearly 20% of patients where conduit prestenting was prohibited. Fracture rate was reduced to <5% in the postapproval study cohort in which homografts were prestented and valve-in-valve cases were included. The evolution of percutaneous pulmonary valve replacement technology offers the hope for patients after Rastelli operation to have fewer reoperations.

Cardiac Catheterization and the “Late Switch.” Despite improved prenatal diagnosis, the presentation of infants with TGA beyond the neonatal period still occurs. The management of these patients can be challenging, especially if the left ventricle is “deconditioned” and is at pulmonary artery pressure. The longer a patient waits before the ASO, the higher the risk that the surgery will fail because of LV dysfunction. Various strategies have been used to manage these patients. Some centers have proposed the use of a pulmonary artery band with insertion of a systemic to pulmonary shunt to “train” the left ventricle. These patients tend to be quite ill, and many have biventricular dysfunction due to the combined acute changes in pressure and volume loads. However, in small babies, the “training phase” for the left ventricle may take only a few days.

After 8 weeks of age, morbidity and the need for mechanical support after ASO increases and hospitalization is prolonged. In countries where mechanical support is not readily available, some have proposed the use of a Mustard or Senning procedure for older patients with TGA. Cardiac catheterization may be helpful if hemodynamic assessment of pulmonary artery pressure and resistance is required.

Figure 51 (A) Anteroposterior and (B) lateral chest radiographs demonstrate the posterior positioning of atrial and ventricular pacemaker leads in the systemic venous baffle in an adult after a Senning operation.
Patient Preparation. Before cardiac catheterization, patients should have a comprehensive echocardiographic assessment to determine if invasive angiography is indicated. The patient’s medical record is reviewed for information related to surgical intervention as well as previous cardiac catheterization procedures. Sedation is selected based on patient age and the procedure being performed. Neonates usually have general anesthesia during cardiac catheterization. Older children may undergo diagnostic catheterization using conscious sedation barring any airway or respiratory issues. Percutaneous access is obtained for catheter insertion using sterile technique. Biplane angiography is typically performed from various standard and nonstandard angles.

Scanning Protocol. The protocol for cardiac catheterization and angiography is out of the scope of this guideline. Standard views for angiography are used, depending on the region of interest as presented above.

Recommendations. The role for cardiac catheterization and angiography for patients with TGA has undergone an evolution over the years. Decades ago, cardiac catheterization provided basic anatomic information regarding the orientation of the great arteries. Many years later, effective palliation with BAS is still used to manage these infants. Patients after ASO may require long-term CA surveillance. After AtrSO, intervention may be required to address baffle stenosis or leaks. For patients after the Rastelli operation, cardiac catheterization has now evolved into a treatment modality with the use of percutaneous pulmonary valve replacement for conduit dysfunction. Advances in echocardiography over the decades have largely supplanted the diagnostic role of cardiac catheterization for patients with TGA. However, the modern era has brought a new and exciting role for cardiac catheterization that may obviate the need for repetitive surgeries.

MULTIMODALITY APPROACH

Echocardiography alone can define all aspects of anatomy in a majority of patients with TGA preoperatively, including unusual findings such as juxtaposition of the atrial appendages. CA anatomy can usually be identified by echocardiography in infants and small children, and additional modalities are rarely required before intervention because the surgeon is able to visualize the CA origins during the procedure. In some cases of suspected intramural course of the CA, CT or x-ray angiography may be used to confirm this diagnosis. Although intramural CAs can still be “switched,” the risk for CA kinking or stenosis is much higher in this population. Echocardiography can also be used primarily to guide BAS, particularly if the procedure is performed in the intensive care unit. The advantage of echocardiography (either TTE or TEE depending on the clinical situation) is that the atrial septum can be seen so that the balloon can be directed up against the septum accurately. With angiography, the atrial septum cannot be directly visualized.

A larger subset of patients will require advanced imaging to define anatomic detail after surgical intervention. TGA is one of the most common congenital diagnoses referred for both CMR and cardiovascular CT. Both modalities offer excellent visualization of complex anatomy and postoperative complications as well as accurate quantification of ventricular function.

After the AtrSO, evaluation of systemic and pulmonary venous baffles, systemic RV systolic function, or AV valve regurgitation is commonly required. Although echocardiography can act as a first-line imaging modality to perform surveillance for these findings, it can miss potentially important complications. There is a relatively high rate of unsuspected atrial baffle occlusion and baffle leaks in patients screened by echocardiography. Advanced imaging (CMR or CT) is reasonable before repeat intervention as it may change the catheterization or surgical approach.

CMR as an initial screening tool to assess for CA issues in older children and adolescents is accepted as standard of care. CA imaging in pediatric patients <2 years of age can be more challenging. CMR imaging of the CAs in patients with slow, regular breathing, and without arrhythmia is optimal, although CMR can be performed to assess CAs in patients with fast breathing as well. Newer 3D CMR imaging techniques have improved the quality of CA imaging and may expand the usefulness of this technique in the future.

Computed tomographic angiography has been shown to have diagnostic visualization of CAs in unrepaired congenital heart disease in a wide range of patients from infants to adolescents using computed tomographic angiography at a radiation dose < 1 mSv. CT has been shown to be accurate compared with invasive angiography for CA lesions after the ASO. There is a wide range of radiation doses delivered to larger patients and to those with higher heart rates or arrhythmia, particularly if attempts to use the lowest possible radiation dose are not implemented.

Both CMR and CT allow calculation of EF from tracing the endocardial borders in end-systole and end-diastole from a short-axis data set. CMR has the advantage that it does not require contrast agents or radiation to assess ventricular function and is considered the gold standard. Acceptable correlation between the two modalities for this indication has been shown. These modalities should be considered if accurate assessment of EF, particularly of the right ventricle, is needed. CMR can also provide accurate information on severity of valve regurgitation using velocity-encoded phase contrast and cine imaging to determine regurgitant fraction.

Stress imaging can be used in the outpatient setting as a screening tool to determine if there is suspicion of CA ischemia. Exercise testing can be done in association with outpatient visits; pharmacologic stress requires a day procedure in the hospital setting. Exercise stress testing can be performed every few years to assess whether patients can safely exercise and/or participate in sports. If ischemia is suspected on exercise or stress testing, further evaluation is warranted by nuclear scintigraphy, CMR or CT. These options are available before deciding to perform cardiac catheterization, which is an invasive procedure that carries sedation or anesthesia risk, radiation risk and risk for vascular injury.

It is recommended that all patients with reimplanted CAs undergo angiography at least once in adulthood to ensure vessel patency. CA occlusion or narrowing can be asymptomatic in children and young adults. CA angiography is also recommended before RV outflow tract reintervention, including transcatheter pulmonary valve replacement and in adult patients who undergoing any cardiac procedure. In addition, cardiac catheterization is indicated if an interventional procedure is being considered.

The choice of imaging modality should be made by determining the best test with the least risk to the patient given a specific clinical question. In some cases, it should be determined by the age of the patient. The best test for an individual patient will vary on the basis of the availability of both advanced imaging technology and skilled personnel available at each institution.
REFERENCES

149. Khairy P, Van Hare GF, Balaji S, Berul CI, Cecchini F, Cohen ML, et al. PACES/HR Expert Consensus Statement on the Recognition and Management of Atrial Arrhythmias in Adult Congenital Heart Disease: developed in partnership between the Pediatric and Congenital Electrophysiology Society (PACES) and the Heart Rhythm Society (HRS). Endorsed by the governing bodies of PACES, HRS, the American College of Cardiology (ACC), the American Heart Association (AHA), the European Heart Rhythm Association (EHRA), the Canadian Heart Rhythm Society (CHRS), and the International Society for Adult Congenital Heart Disease (ISACHD). Heart Rhythm 2014;11:e102-65.

